Automated burnup sequence example 2
Input
% ----------------------------------------------------------------------------- set title "Serpent GC generation example" % - 17x17 PWR fuel assembly, adopted with some modifications from the % MIT BEAVRS Benchmark: http://crpg.mit.edu/pub/beavrs % - Single fuel type, no burnable absorber % - Pin lattice modeled applying universe symmetry (45 degree sector) % --> number of unique pin positions reduced to 39 % - Automated division into depletion zones, each pin handled separately, % material volumes provided using the mvol card % - Single assembly with reflective boundary conditions --> homogeneous % diffusion flux solver will not be run % - B1 leakage correction run (WIMS 172-group structure) % - Historical variations: - low, nominal and high fuel temperature % - Branches to : - low and high boron concentration % - low and high coolant temperature (and density) % - low and high fuel temperature (and density) % - control rod insertion % - Adjustment of boron concentrations using the repm variation % - Adjustment of temperatures using the stp variation % - Control rod insertion using the repu variation % - All branch combinations included (3x3x3x2 = 54 combinations in matrix) % NOTE: The values of temperature-adjusted densities are for demonstration % only, may not reflect actual physics. % ----------------------------------------------------------------------------- % ----- Geometry definitions -------------------------------------------------- % NOTE: Some of the definitions are for the branches % --- Fuel pin at nominal conditions: (fuel at 900K, cladding 592K) pin FUE fuel 0.39480 helium 0.40137 zirc4 0.45870 cool % --- Empty guide tube: pin GTU cool 0.56134 zirc4 0.60198 cool % --- Guide tube with control rod inserted: pin ROD AIC 0.43310 helium 0.43688 steel 0.48387 cool 0.56134 zirc4 0.60198 cool % --- Bare instrumentation tube: pin ITU cool 0.56134 zirc4 0.60198 cool % --- Empty lattice cell: pin XXX void % --- Assembly lattice: % NOTE: Empty positions needed because of 45 deg symmetry lat LAT1 1 5.0394 5.0394 9 9 1.25984 ITU XXX XXX XXX XXX XXX XXX XXX XXX FUE FUE XXX XXX XXX XXX XXX XXX XXX FUE FUE FUE XXX XXX XXX XXX XXX XXX GTU FUE FUE GTU XXX XXX XXX XXX XXX FUE FUE FUE FUE FUE XXX XXX XXX XXX FUE FUE FUE FUE FUE GTU XXX XXX XXX GTU FUE FUE GTU FUE FUE FUE XXX XXX FUE FUE FUE FUE FUE FUE FUE FUE XXX FUE FUE FUE FUE FUE FUE FUE FUE FUE % --- Apply 45 degree symmetry: set usym LAT1 z 2 0.0 0.0 45 45 % --- Assembly cell: surf S01 sqc 0.0 0.0 10.70864 cell C01 A01 fill LAT1 -S01 cell C02 A01 cool S01 % --- Global geometry: surf B01 sqc 0.0 0.0 10.75182 cell G01 0 fill A01 -B01 cell G02 0 outside B01 % --- Reflective boundary conditions: set bc 2 % --- Material subdivision: (handle each pin separately) div fuel sep 1 % --- Volumes of sub-zones: (needed only for burnup calculation) set mvol fuel 1 1.95868 fuel 2 1.95868 fuel 3 1.95868 fuel 4 3.91737 fuel 5 1.95868 fuel 6 3.91737 fuel 7 3.91737 fuel 8 1.95868 fuel 9 3.91737 fuel 10 3.91737 fuel 11 3.91737 fuel 12 1.95868 fuel 13 1.95868 fuel 14 3.91737 fuel 15 3.91737 fuel 16 3.91737 fuel 17 3.91737 fuel 18 3.91737 fuel 19 3.91737 fuel 20 3.91737 fuel 21 3.91737 fuel 22 1.95868 fuel 23 1.95868 fuel 24 3.91737 fuel 25 3.91737 fuel 26 3.91737 fuel 27 3.91737 fuel 28 3.91737 fuel 29 3.91737 fuel 30 1.95868 fuel 31 1.95868 fuel 32 3.91737 fuel 33 3.91737 fuel 34 3.91737 fuel 35 3.91737 fuel 36 3.91737 fuel 37 3.91737 fuel 38 3.91737 fuel 39 1.95868 % ----------------------------------------------------------------------------- % ----- Material definitions -------------------------------------------------- % --- Fuel with 3.4 wt-% U-235: (at nominal 900K temperature) mat fuel -10.2013 burn 1 8016.09c 6.65955E-01 8017.09c 2.53687E-04 92234.09c 8.67553E-05 92235.09c 1.07981E-02 92238.09c 3.22907E-01 % --- Cladding: (at nominal 592K temperature approximated as 600K) mat zirc4 -6.5071 8016.06c 7.08020E-03 24000.06c 1.74646E-03 26000.06c 3.41481E-03 40000.06c 9.76666E-01 50000.06c 1.10918E-02 % --- Steel: mat steel -7.7936 6000.06c 1.15167E-02 14000.06c 5.41767E-03 25055.06c 1.33445E-02 15031.06c 4.46581E-04 42000.06c 2.54632E-03 26000.06c 9.61544E-01 28000.06c 5.18479E-03 % --- Gas gap: mat helium -1.5981E-03 2004.06c 1.00000 % --- Control rod absorber mat AIC -10.1608 47107.06c 4.19366E-01 47109.06c 3.89611E-01 49113.06c 6.11337E-03 49115.06c 1.36391E-01 48106.06c 6.06488E-04 48108.06c 4.31810E-04 48110.06c 6.05989E-03 48111.06c 6.21036E-03 48112.06c 1.17074E-02 48113.06c 5.92903E-03 48114.06c 1.39393E-02 48116.06c 3.63404E-03 % --- Water: (at nominal 550 K temperature) mat water -0.76973 tmp 550 moder lwtr 1001 1001.03c 0.66667 8016.03c 0.33333 therm lwtr lwe7.10t % --- Natural boron: mat boron 1.00000 tmp 550 5010.03c 0.19900 5011.03c 0.80100 % --- Coolant: (at nominal state with 500 ppm boron) mix cool water -0.99950 boron -500E-6 % --- Coolant with without boron: mix cool_0B water -1.00000 % --- Coolant with 1000 ppm boron: mix cool_1000B water -0.99900 boron -1000E-6 % ----------------------------------------------------------------------------- % ----- Group constant generation --------------------------------------------- % --- Universe for group constant generation: set gcu 0 % --- Few-group structure: (two groups, boundary et 0.625 eV) set nfg 2 0.625E-6 % --- Run B1 leakage correction: (WIMS 172-group structure, solution at end) set fum wms172 2 % --- ADF calculation: (super-imposed surface and full symmetry) surf ADF sqc 0.0 0.0 10.75182 set adf 0 ADF full % --- Calculate poison cross sections (volume (10.75182*2)^2): set poi 1 4.624065332496000e+02 % --- Parameters included in coefficient output: set coefpara 0 B1_RABSXS % Reduced absorption cross section B1_NSF % Fission neutron production cross section B1_DIFFCOEF % Diffusion coefficient B1_S0 % Scattering matrix B1_KAPPA % Energy deposited per fission (MeV) B1_FISS % Fission cross section B1_INVV % Inverse neutron speed B1_I135_MICRO_ABS % Microscopic absorption cross section of I-135 B1_XE135_MICRO_ABS % Microscopic absorption cross section of Xe-135 B1_XE135_MACRO_ABS % Macroscopic absorption cross section of Xe-135 B1_PM149_MICRO_ABS % Microscopic absorption cross section of Pm-149 B1_I135_YIELD % Fission yield of I-135 B1_XE135_YIELD % Fission yield of Xe-135 B1_PM149_YIELD % Fission yield of Pm-149 B1_SM149_YIELD % Fission yield of Sm-149 B1_SM149_MICRO_ABS % Microscopic absorption cross section of Sm-149 B1_SM149_MACRO_ABS % Macroscopic absorption cross section of Sm-149 BETA_EFF % Effective delayed neutron fraction LAMBDA % Delayed neutron decay constants DF_SURF_DF % Surface discontinuity factors DF_CORN_DF % Corner discontinuity factors % ----------------------------------------------------------------------------- % ----- Branches ------------------------------------------------------------- % NOTE: Variables are used to pass additional information to output: % LIB - Cross section library used in the calculation % BHI - boron concentration during burnup calculation % VHI - coolant temperature during burnup calculation % TFHI - fueltemperature during burnup calculation % BOR - boron concentration at branch % TMO - coolant temperature at branch % TFU - fuel temperature at branch % CR - insertion of control rods (0 = out, 1 = in) % --- History variables: branch HIS var LIB ENDFB7 var BHI 500 var VHI 550 % --- History with low fuel temperature: branch TFHIlo stp fuel -10.2685 600 stp zirc4 -6.5123 556 var TFUHI 600 % --- History with nominal fuel temperature: branch TFHInom stp fuel -10.2013 900 stp zirc4 -6.5071 600 var TFUHI 900 % --- History with high fuel temperature: branch TFHIhi stp fuel -10.1348 1200 stp zirc4 -6.5020 628 var TFUHI 1200 % --- Nominal branch: (do nothing) branch nom % --- Branch to low boron concentration: branch Blo repm cool cool_0B var BOR 0 % --- Branch to high boron concentration: branch Bhi repm cool cool_1000B var BOR 1000 % --- Branch to low coolant temperature: branch Clo stp water -0.84279 500 lwtr lwe7.08t lwe7.10t stp boron 1.00000 500 var TMO 500 % --- Branch to high coolant temperature: branch Chi stp water -0.66118 600 lwtr lwe7.10t lwe7.12t stp boron 1.00000 600 var TMO 600 % --- Branch to low fuel temperature: branch Flo stp fuel -10.2685 600 stp zirc4 -6.5123 556 var TFU 600 % --- Branch to nominal fuel temperature: branch Fnom stp fuel -10.2013 900 stp zirc4 -6.5071 600 var TFU 900 % --- Branch to high fuel temperature: branch Fhi stp fuel -10.1348 1200 stp zirc4 -6.5020 628 var TFU 1200 % --- Insertion of control rods: branch CR repu GTU ROD var CR 1 % ---------------------------------------------------------------------------- % ----- Burnup calculation --------------------------------------------------- % --- Power density: set powdens 38.6E-3 % --- Burnup algorithm: (linear extrapolation for predictor, % linear interpolation for corrector) set pcc LELI % --- Depletion history: dep butot 0.1 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 45.0 50.0 % --- Casematrix: (full set of histories: 3, full set of variations: 3x3x3x2) casematrix cm_example 3 TFHIlo TFHInom TFHIhi 11 0 0.1 1 3 5 10 15 20 30 40 50 3 nom Blo Bhi 3 nom Clo Chi 3 Flo Fnom Fhi 2 nom CR 1 HIS % ---------------------------------------------------------------------------- % ----- Misc. options --------------------------------------------------------- % --- Criticality cycles: (5M histories in total) set pop 25000 200 10 % --- Libraries: set acelib "sss_endfb7u.xsdata" set declib "sss_endfb7.dec" set nfylib "sss_endfb7.nfy" % -----------------------------------------------------------------------------
Run commands
Example 1
sss2 -casematrix cm_example 1 0 <input> sss2 -casematrix cm_example 2 0 <input> sss2 -casematrix cm_example 3 0 <input>
Example 2
First
sss2 -casematrix cm_example 1 -1 <input> sss2 -casematrix cm_example 2 -1 <input> sss2 -casematrix cm_example 3 -1 <input>
then
sss2 -casematrix cm_example 1 0 -coe <input> sss2 -casematrix cm_example 2 0 -coe <input> sss2 -casematrix cm_example 3 0 -coe <input>
Example 3
First
sss2 -casematrix cm_example 1 -1 <input> sss2 -casematrix cm_example 2 -1 <input> sss2 -casematrix cm_example 3 -1 <input>
then
for i in {1..54} do sss2 -casematrix cm_example 1 i <input> done for i in {1..54} do sss2 -casematrix cm_example 2 i <input> done for i in {1..54} do sss2 -casematrix cm_example 3 i <input> done
Output
In total the group constant output (<input>_h<j>_r<i>.coe files, j=1, 2, 3; i=1, 2, ..., 54) is 46332 lines long. Below are the first and last two blocks.
1 594 1 54 1 5 nom nom Flo nom HIS 8 VERSION 2.2.1 DATE 22/06/01 TIME 09:42:16 TFU 600 LIB ENDFB7 BHI 500 VHI 550 TFUHI 600 0 1 11 0 21 B1_RABSXS 2 8.79378E-03 8.49673E-02 B1_NSF 2 6.42718E-03 1.32907E-01 B1_DIFFCOEF 2 1.35085E+00 3.73523E-01 B1_S0 4 5.38053E-01 1.87001E-02 1.27920E-03 1.37334E+00 B1_KAPPA 2 2.03730E+02 2.02270E+02 B1_FISS 2 2.51605E-03 5.45439E-02 B1_INVV 2 5.63898E-08 2.50619E-06 B1_I135_MICRO_ABS 2 9.14461E-01 3.91833E+01 B1_XE135_MICRO_ABS 2 1.27409E+02 1.48706E+06 B1_XE135_MACRO_ABS 2 0.00000E+00 0.00000E+00 B1_PM149_MICRO_ABS 2 4.64376E+01 6.86699E+02 B1_I135_YIELD 2 6.48370E-02 6.28187E-02 B1_XE135_YIELD 2 1.86225E-03 2.56635E-03 B1_PM149_YIELD 2 1.24859E-02 1.08163E-02 B1_SM149_YIELD 2 1.30316E-12 1.71016E-12 B1_SM149_MICRO_ABS 2 1.00804E+02 4.43872E+04 B1_SM149_MACRO_ABS 2 0.00000E+00 0.00000E+00 BETA_EFF 9 6.88113E-03 1.99853E-04 1.10198E-03 1.09007E-03 3.14753E-03 9.97521E-04 3.44185E-04 0.00000E+00 0.00000E+00 LAMBDA 9 8.06616E-01 1.24908E-02 3.16827E-02 1.10018E-01 3.20051E-01 1.34656E+00 8.84128E+00 0.00000E+00 0.00000E+00 DF_SURF_DF 8 9.95793E-01 1.00177E+00 9.95793E-01 1.00177E+00 9.95793E-01 1.00177E+00 9.95793E-01 1.00177E+00 DF_CORN_DF 8 9.93396E-01 9.97134E-01 9.93396E-01 9.97134E-01 9.93396E-01 9.97134E-01 9.93396E-01 9.97134E-01 2 594 1 54 1 5 nom nom Flo nom HIS 8 VERSION 2.2.1 DATE 22/06/01 TIME 09:43:28 TFU 600 LIB ENDFB7 BHI 500 VHI 550 TFUHI 600 0.1 2 11 0 21 B1_RABSXS 2 8.82683E-03 8.75046E-02 B1_NSF 2 6.43665E-03 1.31311E-01 B1_DIFFCOEF 2 1.35379E+00 3.74070E-01 B1_S0 4 5.38988E-01 1.88636E-02 1.31444E-03 1.37319E+00 B1_KAPPA 2 2.03725E+02 2.02277E+02 B1_FISS 2 2.52016E-03 5.38774E-02 B1_INVV 2 5.68288E-08 2.49612E-06 B1_I135_MICRO_ABS 2 9.22006E-01 3.88777E+01 B1_XE135_MICRO_ABS 2 1.28340E+02 1.46651E+06 B1_XE135_MACRO_ABS 2 2.83592E-07 3.24053E-03 B1_PM149_MICRO_ABS 2 4.67862E+01 6.81330E+02 B1_I135_YIELD 2 6.48296E-02 6.28219E-02 B1_XE135_YIELD 2 1.86789E-03 2.57628E-03 B1_PM149_YIELD 2 1.24797E-02 1.08180E-02 B1_SM149_YIELD 2 1.58857E-12 2.71262E-12 B1_SM149_MICRO_ABS 2 1.01462E+02 4.38487E+04 B1_SM149_MACRO_ABS 2 1.91377E-07 8.27067E-05 BETA_EFF 9 6.86145E-03 2.03605E-04 1.10363E-03 1.08964E-03 3.13992E-03 9.81017E-04 3.43631E-04 0.00000E+00 0.00000E+00 LAMBDA 9 8.05690E-01 1.24907E-02 3.16858E-02 1.10077E-01 3.20241E-01 1.34642E+00 8.87863E+00 0.00000E+00 0.00000E+00 DF_SURF_DF 8 9.94038E-01 1.00486E+00 9.94038E-01 1.00486E+00 9.94038E-01 1.00486E+00 9.94038E-01 1.00486E+00 DF_CORN_DF 8 9.91453E-01 9.92883E-01 9.91453E-01 9.92883E-01 9.91453E-01 9.92883E-01 9.91453E-01 9.92883E-01 (...) 593 594 54 54 1 5 Bhi Chi Fhi CR HIS 11 VERSION 2.2.1 DATE 22/06/01 TIME 22:37:08 BOR 1000 TMO 600 TFU 1200 CR 1 LIB ENDFB7 BHI 500 VHI 550 TFUHI 1200 40 10 11 0 21 B1_RABSXS 2 1.44646E-02 1.21010E-01 B1_NSF 2 4.00288E-03 1.04975E-01 B1_DIFFCOEF 2 1.56209E+00 4.25999E-01 B1_S0 4 4.89908E-01 1.30209E-02 2.39395E-03 1.13096E+00 B1_KAPPA 2 2.06636E+02 2.07080E+02 B1_FISS 2 1.44041E-03 3.77869E-02 B1_INVV 2 5.10730E-08 2.34778E-06 B1_I135_MICRO_ABS 2 8.15945E-01 3.93382E+01 B1_XE135_MICRO_ABS 2 9.74577E+01 1.44416E+06 B1_XE135_MACRO_ABS 2 1.59819E-07 2.36824E-03 B1_PM149_MICRO_ABS 2 4.47368E+01 6.88529E+02 B1_I135_YIELD 2 6.72056E-02 6.54426E-02 B1_XE135_YIELD 2 3.03346E-03 7.39994E-03 B1_PM149_YIELD 2 1.41834E-02 1.22683E-02 B1_SM149_YIELD 2 2.29465E-10 5.02069E-10 B1_SM149_MICRO_ABS 2 8.62015E+01 4.34505E+04 B1_SM149_MACRO_ABS 2 1.53978E-06 7.76139E-04 BETA_EFF 9 4.83023E-03 1.06839E-04 8.42260E-04 7.18773E-04 2.04584E-03 8.69967E-04 2.46550E-04 0.00000E+00 0.00000E+00 LAMBDA 9 8.15738E-01 1.26264E-02 3.04626E-02 1.11931E-01 3.26110E-01 1.25021E+00 8.31563E+00 0.00000E+00 0.00000E+00 DF_SURF_DF 8 1.04461E+00 1.34106E+00 1.04461E+00 1.34106E+00 1.04461E+00 1.34106E+00 1.04461E+00 1.34106E+00 DF_CORN_DF 8 1.08431E+00 1.47972E+00 1.08431E+00 1.47972E+00 1.08431E+00 1.47972E+00 1.08431E+00 1.47972E+00 594 594 54 54 1 5 Bhi Chi Fhi CR HIS 11 VERSION 2.2.1 DATE 22/06/01 TIME 22:38:40 BOR 1000 TMO 600 TFU 1200 CR 1 LIB ENDFB7 BHI 500 VHI 550 TFUHI 1200 50 11 11 0 21 B1_RABSXS 2 1.47121E-02 1.19001E-01 B1_NSF 2 3.75658E-03 9.75231E-02 B1_DIFFCOEF 2 1.57641E+00 4.24541E-01 B1_S0 4 4.90410E-01 1.29179E-02 2.35251E-03 1.13251E+00 B1_KAPPA 2 2.07122E+02 2.07720E+02 B1_FISS 2 1.33258E-03 3.45670E-02 B1_INVV 2 5.07927E-08 2.35719E-06 B1_I135_MICRO_ABS 2 8.08553E-01 3.96909E+01 B1_XE135_MICRO_ABS 2 9.56987E+01 1.46197E+06 B1_XE135_MACRO_ABS 2 1.44461E-07 2.20690E-03 B1_PM149_MICRO_ABS 2 4.45105E+01 6.94720E+02 B1_I135_YIELD 2 6.76409E-02 6.58231E-02 B1_XE135_YIELD 2 3.07226E-03 7.82870E-03 B1_PM149_YIELD 2 1.45304E-02 1.24973E-02 B1_SM149_YIELD 2 2.90027E-10 5.51343E-10 B1_SM149_MICRO_ABS 2 8.51383E+01 4.39312E+04 B1_SM149_MACRO_ABS 2 1.44604E-06 7.46152E-04 BETA_EFF 9 4.66336E-03 9.74056E-05 8.16816E-04 6.84259E-04 1.96305E-03 8.63717E-04 2.38117E-04 0.00000E+00 0.00000E+00 LAMBDA 9 7.96151E-01 1.26764E-02 3.03030E-02 1.12757E-01 3.27242E-01 1.23518E+00 8.17325E+00 0.00000E+00 0.00000E+00 DF_SURF_DF 8 1.04390E+00 1.34320E+00 1.04390E+00 1.34320E+00 1.04390E+00 1.34320E+00 1.04390E+00 1.34320E+00 DF_CORN_DF 8 1.08309E+00 1.50100E+00 1.08309E+00 1.50100E+00 1.08309E+00 1.50100E+00 1.08309E+00 1.50100E+00