
Using Serpent with the nodal
neutronics program Ants

V. Valtavirta, A. Rintala, U. Lauranto and others

08/2022 VTT – beyond the obvious

27/09/2022 VTT – beyond the obvious

 Context
• The Kraken framework

• The Serpent-Ants calculation chain

 Group constant generation with Serpent for Ants.

 Current work on VVER benchmarks.

 Summary and next steps

Contents

Context:
The Kraken framework
The Serpent-Ants calculation chain

27/09/2022 VTT – beyond the obvious

27/09/2022 VTT – beyond the obvious

 VTT’s new computational reactor analysis

framework[1].

 Built for:
• Independent deterministic safety analyses.

• Evaluation of new reactor concepts.

• Generation of input data for system codes, e.g. Apros.

 Intended to replace the current tools (e.g. HEXBU-3D

and HEXTRAN based calculation chains) in some years.

 Neutronics solution is based on either
• Direct Serpent continuous energy Monte Carlo solution

or

• Serpent-Ants two step calculation chain.

• Serpent can provide both the homogenized group

constants and the best possible reference solution

even for 3D full core.

The Kraken framework

[1] V. Valtavirta et al. “Kraken – an Upcoming Finnish

Reactor Analysis Framework”.

Proc. ANS MC2019. Portland, OR, USA, Aug. 2019.

A schematic representation of the plans for the

completed Kraken framework. Finnish solver modules

developed at VTT are shown in yellow, while potential

state-of-the-art third party solvers to be coupled are

shown in orange.

Serpent[2]

 Continuous energy Monte Carlo multi-

purpose particle transport code.

 Initially designed for group constant

generation.

 Flexible geometry, neutron and photon

transport.

 Steady state, burnup and transient.

 Developed at VTT since 2004

27/09/2022

The Serpent-Ants calculation chain

Ants[3,4]

 Multi-group nodal neutronics code.

 Currently uses nodal diffusion.

 Combines AFEN and FENM approaches

for flux solution.

 Rectangular, hexagonal and triangular

nodal models.

 Steady state, burnup and transient.

 Developed at VTT since 2017

[2] J. Leppänen et al. “The Serpent Monte Carlo code: Status, development and applications in 2013”.

Annals of Nuclear Energy 82 (2015), pp. 142–150.

[3] V. Sahlberg and A. Rintala. “Development and first results of a new rectangular nodal diffusion solver of Ants”.

Proc. PHYSOR 2018. Cancun, Mexico, Apr. 2018

[4] A. Rintala and V. Sahlberg. “Extension of nodal diffusion solver of Ants to hexagonal geometry”.

Kerntechnik 84 (2019), pp. 252–261.

• Serpent is the one and only tool for group constant generation in the Kraken framework.

• The aim is to leverage the advanced capabilities of Serpent in the two step calculation chain.

Using Serpent to generate group
constants for Ants in the Kraken
framework

27/09/2022 VTT – beyond the obvious

Group constant generation

27/09/2022 VTT – beyond the obvious

Serpent 2D

Infinite lattice

calculations

for fuel

assemblies

fuel assembly

infinite lattice

group constants

Group constant

parametrization

Ants 3D full

core

calculation

parametrized

group constant

library

Radial reflector

discontinuity

factor

calculation

Radial reflector

group constants

incl. DFs

reflector

group constants

without DFs

full core

heterogeneous

fluxes and

currents

ADFs

ADF and form

function

calculation

FA GCs

With proper ADFs

And pin power

Form functions

Serpent 3D

full core /

minicore

calculation

including

reflectors

Serpent 2D

full core

calculation

including

reflectors

Axial reflector

group constants

(no zDFs)

 Full assembly in infinite lattice.

 Depletion calculations with nominal and off-nominal conditions.

 Branch calculations with momentary variations:
• Different (Tfuel , Tcool , ρcool , CB) variations.

• Control rod variations.

• Spacer grid variations.

• Instrument tube variations.

 Can use an intermediate multigroup structure and apply leakage

correction / critical spectrum in condensation to a few group structure.

 Typically produce CMM[7] or transport corrected diffusion coefficients.

27/09/2022 VTT – beyond the obvious

Best practices calculation chain
fuel GCs

[7] Z. Liu et al. “Cumulative migration method for computing rigorous diffusion coefficients

and transport cross sections from Monte Carlo”.

Annals of Nuclear Energy, 112 (2018), pp. 507–516.

 Full assembly in infinite lattice (set bc) (input example)
• ADF setup

• Pin power setup

• Poison constants, microdepletion setup.

 Depletion calculations with nominal and off-nominal conditions.

 Branch calculations with momentary variations:
• Different (Tfuel , Tcool , ρcool , CB) variations.

• Control rod variations.

• Spacer grid variations.

• Instrument tube variations.

 Can use an intermediate multigroup structure and apply

leakage correction / critical spectrum in condensation to a few group structure.

 Typically produce CMM[7] or transport corrected diffusion coefficients.

27/09/2022 VTT – beyond the obvious

Practical things about fuel GCs

Use of:

branch-card

casematrix-card

Running Serpent from

command line

his, coe, ln -s

set fum cas70_ext 2 f 3

set micro cas70_ext

set nfg cas2_ext

set repro 0

set shbuf 0 0

set cmm 1

set trc cool "s2v0_endfb71.h_in_h2o.trcdata" 1.000000E-11 10010

27/09/2022 VTT – beyond the obvious

Setting up ADF and pin power evaluation

27/09/2022 VTT – beyond the obvious

Poison constants and microdepletion data

% --- Fission poison and microdepletion data generation

% set poi OPT VOL [XE135M]

set poi 1 482.3415

% set mdep UNI VOL N MAT1 MAT2 ... MATN
% ZAI1 MT1
% ZAI2 MT2
% ...

set mdep 0 482.3415 0
922380 16
922380 18
922380 102
932390 16
932390 18
932390 102
942390 16
942390 18
942390 102

27/09/2022 VTT – beyond the obvious

Using branch and casematrix to set up
history and branch calculations
branch case0
stp fuel13 -10.2605 1005.0
stp fuel22 -10.2605 1005.0
stp fuel30 -10.2605 1005.0
stp fuel36 -10.2605 1005.0
stp fuel40 -10.2605 1005.0
stp fuel44 -10.2605 1005.0
stp fuel24Gd -10.2279 1005.0
stp fuel33Gd -10.2279 1005.0
stp fuel36Gd -10.2279 1005.0
stp E110 -6.54516 1005.0
stp E635 -6.55 1005.0
stp steel -7.9 1005.0
stp DyTi -5.1 1005.0
stp B4C -1.8 1005.0
stp helium -0.0015981 1005.0
repm cool cool_1207B_0554T_0762D
var BOR 1207
var TFU 1005.0
var TMO 554.0
var DMO 0.7621

KrakenTools/tests/*GC_generator*

27/09/2022 VTT – beyond the obvious

Using branch and casematrix to set up
history and branch calculations
branch no_cr
repu pGT pGTEmpty
var CR 0

branch dyti
repu pGT pGTDT
var CR 1

branch boc
repu pGT pGTBC
var CR 2

branch no_spa
repu uAxiWater uWater
var SPA 0

branch spa
repu uAxiWater uGrid
var SPA 1

KrakenTools/tests/*GC_generator*

27/09/2022 VTT – beyond the obvious

Using branch and casematrix to set up
history and branch calculationsbranch nom_his

stp fuel13 -10.2605 1005.0
stp fuel22 -10.2605 1005.0
stp fuel30 -10.2605 1005.0
stp fuel36 -10.2605 1005.0
stp fuel40 -10.2605 1005.0
stp fuel44 -10.2605 1005.0
stp fuel24Gd -10.2279 1005.0
stp fuel33Gd -10.2279 1005.0
stp fuel36Gd -10.2279 1005.0
stp E110 -6.54516 578.0
stp E635 -6.55 578.0
stp steel -7.9 578.0
stp DyTi -5.1 578.0
stp B4C -1.8 578.0
stp helium -0.0015981 578.0
repm cool cool_0525B_0578T_0716D
repu pGT pGTEmpty
repu uAxiWater uWater
var hTFU 1005.0
var hBOR 525.0
var hTMO 578.0
var hDMO 0.7167
var hCR 0
var hSPA 0 KrakenTools/tests/*GC_generator*

27/09/2022 VTT – beyond the obvious

Using branch and casematrix to set up
history and branch calculations

% Nominal state point for all spacer/cr combinations
% at many burnup points

casematrix nominals
2 nom_his off_nom_his
25 0 0.1 0.3 0.6 1 1.5 2 3 4 5 6 7 8 9 10 11 12.5 15
17.5 20 22.5 25 27.5 30 34.0
1 case0
2 no_spa spa
3 no_cr dyti boc

% Off nominal state points for polynomial fitting
% at a coarser burnup grid

casematrix coefficients
2 nom_his off_nom_his
11 0 1 3 5 7 10 15 20 25 30 34
13 case1 case2 case3 case4 case5 case6 case7 case8
case9 case10 case11 case12 case13
2 no_spa spa
3 no_cr dyti boc

KrakenTools/tests/*GC_generator*

27/09/2022 VTT – beyond the obvious

Using branch and casematrix to set up
history and branch calculations

First run histories (burnup calculations)
sss2 -casematrix <case_name> <his_idx> <coe_idx> <input>

sss2 -omp 20 -casematrix nominals 1 -1 390GO
^Produces 390GO_nominals_h1.wrk binary restart
(nominal history)

sss2 -omp 20 -casematrix nominals 2 -1 390GO
^Produces 390GO_nominals_h2.wrk binary restart
(off-nominal history)

We can use the same restarts for coefficient calculations

ln -s 390GO_nominals_h1.wrk 390GO_coefficients_h1.wrk
ln -s 390GO_nominals_h2.wrk 390GO_coefficients_h2.wrk

27/09/2022 VTT – beyond the obvious

Using branch and casematrix to set up
history and branch calculations

Then run branches (coefficient calculations)
sss2 -casematrix <case_name> <his_idx> <coe_idx> <input>

sss2 -omp 20 –coe –casematrix nominals 1 0 390GO
Runs all branches for nominal history based on
390GO_nominals_h1.wrk binary restart
Has 1x2x3=6 branches
(x25 burnups = 150 transport solutions)

sss2 -omp 20 –coe –casematrix nominals 2 0 390GO

sss2 -omp 20 –coe –casematrix coefficients 1 0 390GO
Has 13x2x3=78 branches
(x11 burnups = 858 transport solutions)

sss2 -omp 20 –coe –casematrix coefficients 2 0 390GO

These 4 calculations could be distributed across 4
calculation nodes on a cluster

% Nominal state point for all spacer/cr combinations
% at many burnup points

casematrix nominals
2 nom_his off_nom_his
25 0 0.1 0.3 0.6 1 1.5 2 3 4 5 6 7 8 9 10 11 12.5 15 17.5 20
22.5 25 27.5 30 34.0
1 case0
2 no_spa spa
3 no_cr dyti boc

% Off nominal state points for polynomial fitting
% at a coarser burnup grid

casematrix coefficients
2 nom_his off_nom_his
11 0 1 3 5 7 10 15 20 25 30 34
13 case1 case2 case3 case4 case5 case6 case7 case8 case9 case10
case11 case12 case13
2 no_spa spa
3 no_cr dyti boc

27/09/2022 VTT – beyond the obvious

Using branch and casematrix to set up
history and branch calculations

Then run branches (coefficient calculations)
sss2 -casematrix <case_name> <his_idx> <coe_idx> <input>

sss2 -omp 20 –casematrix nominals 1 1 390GO
sss2 -omp 20 –casematrix nominals 1 2 390GO
sss2 -omp 20 –casematrix nominals 1 3 390GO
sss2 -omp 20 –casematrix nominals 1 4 390GO
sss2 -omp 20 –casematrix nominals 1 5 390GO
sss2 -omp 20 –casematrix nominals 1 6 390GO

Runs single branches for nominal history based on
390GO_nominals_h1.wrk binary restart
Has 1x2x3=6 branches
(x25 burnups = 150 transport solutions)

% Nominal state point for all spacer/cr combinations
% at many burnup points

casematrix nominals
2 nom_his off_nom_his
25 0 0.1 0.3 0.6 1 1.5 2 3 4 5 6 7 8 9 10 11 12.5 15 17.5 20
22.5 25 27.5 30 34.0
1 case0
2 no_spa spa
3 no_cr dyti boc

% Off nominal state points for polynomial fitting
% at a coarser burnup grid

casematrix coefficients
2 nom_his off_nom_his
11 0 1 3 5 7 10 15 20 25 30 34
13 case1 case2 case3 case4 case5 case6 case7 case8 case9 case10
case11 case12 case13
2 no_spa spa
3 no_cr dyti boc

27/09/2022 VTT – beyond the obvious

Using branch and casematrix to set up
history and branch calculations

Then run branches (coefficient calculations)
sss2 -casematrix <case_name> <his_idx> <coe_idx> <input>

sss2 -omp 20 –casematrix coefficients 2 1 390GO
sss2 -omp 20 –casematrix coefficients 2 2 390GO
sss2 -omp 20 –casematrix coefficients 2 3 390GO
...
sss2 -omp 20 –casematrix coefficients 2 77 390GO
sss2 -omp 20 –casematrix coefficients 2 78 390GO

Runs single branches for off-nominal history based on
390GO_coefficients_h2.wrk binary restart
Has 13x2x3=78 branches
(x11 burnups = 858 transport solutions)

Running branches separately yields 6*2+78*2 = 168
separate Serpent runs which can be distributed across
a computational cluster

% Nominal state point for all spacer/cr combinations
% at many burnup points

casematrix nominals
2 nom_his off_nom_his
25 0 0.1 0.3 0.6 1 1.5 2 3 4 5 6 7 8 9 10 11 12.5 15 17.5 20
22.5 25 27.5 30 34.0
1 case0
2 no_spa spa
3 no_cr dyti boc

% Off nominal state points for polynomial fitting
% at a coarser burnup grid

casematrix coefficients
2 nom_his off_nom_his
11 0 1 3 5 7 10 15 20 25 30 34
13 case1 case2 case3 case4 case5 case6 case7 case8 case9 case10
case11 case12 case13
2 no_spa spa
3 no_cr dyti boc

 390GO_<case_name>_h<his_idx>_r<coe_idx>.coe files
• Contain homogenized few group constants for homogenized universes.

• Includes cross sections, discontinuity factor data, pin power form

function data, poison constants, basic time constants, microdepletion

data etc.

• var definitions from branch cards show up in .coe files to help identify,

which file contains which data.

 390GO_<case_name>_h<his_idx>_r<coe_idx>_res.m files
• Contain some other important data not directly bound to homogenized

universes.

 390GO_<case_name>_h<his_idx>_r<coe_idx>_mdxb<coe_idx>.m files
• Contain important data for microdepletion:

• Fission spectra.

• Decay reactions (decay constants, targets, branching ratios).

• Neutron induced reactions (MTs, reaction products, Q-values).

27/09/2022 VTT – beyond the obvious

Output data from fuel GC calculations

sss2 -casematrix <case_name> <his_idx> <coe_idx> <input>
branch case0
stp fuel13 -10.2605 1005.0
stp fuel22 -10.2605 1005.0
stp fuel30 -10.2605 1005.0
stp fuel36 -10.2605 1005.0
stp fuel40 -10.2605 1005.0
stp fuel44 -10.2605 1005.0
stp fuel24Gd -10.2279 1005.0
stp fuel33Gd -10.2279 1005.0
stp fuel36Gd -10.2279 1005.0
stp E110 -6.54516 1005.0
stp E635 -6.55 1005.0
stp steel -7.9 1005.0
stp DyTi -5.1 1005.0
stp B4C -1.8 1005.0
stp helium -0.0015981 1005.0
repm cool cool_1207B_0554T_0762D
var BOR 1207
var TFU 1005.0
var TMO 1005.0
var DMO 0.7621

Can be read into Python objects

with serpentTools and KrakenTools

Group constant generation

27/09/2022 VTT – beyond the obvious

Serpent 2D

Infinite lattice

calculations

for fuel

assemblies

fuel assembly

infinite lattice

group constants

Group constant

parametrization

Ants 3D full

core

calculation

parametrized

group constant

library

Radial reflector

discontinuity

factor

calculation

Radial reflector

group constants

incl. DFs

reflector

group constants

without DFs

full core

heterogeneous

fluxes and

currents

ADFs

ADF and form

function

calculation

FA GCs

With proper ADFs

And pin power

Form functions

Serpent 3D

full core /

minicore

calculation

including

reflectors

Serpent 2D

full core

calculation

including

reflectors

Axial reflector

group constants

(no zDFs)

 Assembly discontinuity factors and pin power form functions (FFs) are by definition

dependent on the homogeneous flux solution.
• In some simple cases, the homogeneous flux is constant inside the assembly and equal to the mean

heterogeneous flux.

• In general, an actual solution to the homogeneous problem is required.

• Serpent has an internal diffusion flux solver, but as the homogeneous solution is dependent on the

nodal model, using the Serpent calculated ADFs and form functions is wrong in general.

 Instead, Ants single node 2D simulations are executed using each set of generated group

constants (and boundary conditions) to provide the corresponding homogeneous surface

fluxes and homogeneous pin-cell fluxes.
• The process is heavily automated: krakentools.ants.evaluate_ffs_and_adfs_with_ants()
• ADFs and FFs can be evaluated based on known heterogeneous and homogeneous data.

27/09/2022 VTT – beyond the obvious

Fuel ADFs and pin power form functions

 Instead, Ants single node 2D simulations are executed using each set of generated group

constants (and boundary conditions) to provide the corresponding homogeneous surface

fluxes and homogeneous pin-cell fluxes.
• The process is heavily automated: krakentools.ants.evaluate_ffs_and_adfs_with_ants()
• ADFs and FFs can be evaluated based on known heterogeneous and homogeneous data.

27/09/2022 VTT – beyond the obvious

Fuel ADFs and pin power form functions

Heterogeneous data utilized from .coe files:

DF_HET_SURF_FLUX

PPW_POW

Group constant generation

27/09/2022 VTT – beyond the obvious

Serpent 2D

Infinite lattice

calculations

for fuel

assemblies

fuel assembly

infinite lattice

group constants

Group constant

parametrization

Ants 3D full

core

calculation

parametrized

group constant

library

Radial reflector

discontinuity

factor

calculation

Radial reflector

group constants

incl. DFs

reflector

group constants

without DFs

full core

heterogeneous

fluxes and

currents

ADFs

ADF and form

function

calculation

FA GCs

With proper ADFs

And pin power

Form functions

Serpent 3D

full core /

minicore

calculation

including

reflectors

Serpent 2D

full core

calculation

including

reflectors

Axial reflector

group constants

(no zDFs)

 Radial reflector constants are generated using a 2D full core

geometry.

 Multiple transport solutions at zero burnup:
• Cover different (Tcool , ρcool , CB) variations.

 Diffusion coefficients transport corrected for H-1 in water.
• set trc cool "s2v0_endfb71.h_in_h2o.trcdata" 1.000000E-11 10010

Best practices calculation chain
reflector GCs

1x1 reflector meshing

2x2 reflector meshing

 Radial reflector constants are generated using a 2D full core

geometry.

 Multiple transport solutions at zero burnup:
• Cover different (Tcool , ρcool , CB) variations.

 Diffusion coefficients transport corrected for H-1 in water.
• set trc cool "s2v0_endfb71.h_in_h2o.trcdata" 1.000000E-11 10010

 Hexagonal lattice radial reflector currently homogenized

using hexagonal nodes. In the future, also with triangular

nodes.

Best practices calculation chain
reflector GCs

Superimposed universes for
reflector group constants

% --- First define bounding surfaces for superimposed universes
% (must not overlap)

% --- Surface bounding node RR01

surf s_bound_RR01 hexxprism 165.20000000000002 0.0 11.8 30 50

% --- Surface bounding node RR02

surf s_bound_RR02 hexxprism 177.0 20.43819952931275 11.8 30 50

% --- Surface bounding node RR03

surf s_bound_RR03 hexxprism 165.20000000000002 40.8763990586255 11.8 30 50

...

Superimposed universes for
reflector group constants

% --- The define (superimposed) universes based on the surfaces

% --- Superimposed universe for node RR01

cell c_SI_RR01 -u_SI_RR01 void -s_bound_RR01

% --- Superimposed universe for node RR02

cell c_SI_RR02 -u_SI_RR02 void -s_bound_RR02

% --- Superimposed universe for node RR03

cell c_SI_RR03 -u_SI_RR03 void -s_bound_RR03

...

Superimposed universes for
reflector group constants

% --- Finally setup gcu and adf cards for the superimposed universes

set gcu -u_SI_RR01
set adf -u_SI_RR01 s_bound_RR01 0

set gcu -u_SI_RR02
set adf -u_SI_RR02 s_bound_RR02 0

set gcu -u_SI_RR03
set adf -u_SI_RR03 s_bound_RR03 0

...

 Universes linked to gcu or adf cards, but that are not part of

the geometry are treated by Serpent as superimposed on

top of the geometry.

 Some slowdown to simulations due to (additional) checking

if collision is in a superimposed universe or crosses the

boundary of one at each interaction site.

 Reflector casematrix may not need > 0 burnups or fuel

temperature branches.

 fullcore_<case_name>_h<his_idx>_r<coe_idx>.coe files
• Contain homogenized few group constants for homogenized universes.

• Includes group constants and heterogeneous node boundary fluxes

and currents.

• var definitions from branch cards show up in .coe files to help identify,

which file contains which data.

 fullcore_<case_name>_h<his_idx>_r<coe_idx>_res.m files
• Contain some other important data not directly bound to homogenized

universes.

27/09/2022 VTT – beyond the obvious

Output data
sss2 -casematrix <case_name> <his_idx> <coe_idx> <input>
Can run with

sss2 –omp 20 -casematrix reflector -1 <coe_idx> fullcore

KrakenTools collects results from 360 degree core

and averages results over symmetric positions

Group constant generation

27/09/2022 VTT – beyond the obvious

Serpent 2D

Infinite lattice

calculations

for fuel

assemblies

fuel assembly

infinite lattice

group constants

Group constant

parametrization

Ants 3D full

core

calculation

parametrized

group constant

library

Radial reflector

discontinuity

factor

calculation

Radial reflector

group constants

incl. DFs

reflector

group constants

without DFs

full core

heterogeneous

fluxes and

currents

ADFs

ADF and form

function

calculation

FA GCs

With proper ADFs

And pin power

Form functions

Serpent 3D

full core /

minicore

calculation

including

reflectors

Serpent 2D

full core

calculation

including

reflectors

Axial reflector

group constants

(no zDFs)

1. The reflector side DF is first evaluated simply as the ratio of the

heterogeneous surface flux from the Serpent 3D solution and the

homogeneous surface flux from a single node Ants calculation using

group constants and boundary condition currents from the Serpent3D

solution:

𝑓refl.
Ants =

𝜙refl.
Serpent3D

𝝫refl.
Ants

2. The fuel side DF is similarly evaluated

𝑓fuel
Ants =

𝜙fuel
Serpent3D

𝝫fuel
Ants

3. This DF is then corrected[8] by the ratio of the assembly discontinuity

factor 𝑓fuel
ADF evaluated for the fuel assembly in the infinite lattice 2D

Serpent calculation and 𝑓fuel
Ants:

𝑓refl. = 𝑓refl.
Ants ×

𝑓fuel
ADF

𝑓fuel
Ants

Best practices calculation chain
reflector discontinuity factors

[8] K. S. Smith. “Nodal diffusion methods and lattice physics data in LWR analyses: Understanding

numerous subtle details”.

Progress in Nuclear Energy 101 (2017), pp. 360–369

Radial reflector

discontinuity

factor

calculation

Radial reflector

group constants

incl. DFs

reflector

group constants

without DFs

full core

heterogeneous

fluxes and

currents

ADFs

FA GCs

With proper ADFs

And pin power

Form functions

krakentools.reflectorhg.solve_ants_2d_nodes()

1. The reflector side DF is first evaluated simply as the ratio of the

heterogeneous surface flux from the Serpent 3D solution and the

homogeneous surface flux from a single node Ants calculation using

group constants and boundary condition currents from the Serpent3D

solution:

𝑓refl.
Ants =

𝜙refl.
Serpent3D

𝝫refl.
Ants

2. The fuel side DF is similarly evaluated

𝑓fuel
Ants =

𝜙fuel
Serpent3D

𝝫fuel
Ants

3. This DF is then corrected[8] by the ratio of the assembly discontinuity

factor 𝑓fuel
ADF evaluated for the fuel assembly in the infinite lattice 2D

Serpent calculation and 𝑓fuel
Ants:

𝑓refl. = 𝑓refl.
Ants ×

𝑓fuel
ADF

𝑓fuel
Ants

Best practices calculation chain
reflector discontinuity factors

[8] K. S. Smith. “Nodal diffusion methods and lattice physics data in LWR analyses: Understanding

numerous subtle details”.

Progress in Nuclear Energy 101 (2017), pp. 360–369

Radial reflector

discontinuity

factor

calculation

Radial reflector

group constants

incl. DFs

reflector

group constants

without DFs

full core

heterogeneous

fluxes and

currents

ADFs

FA GCs

With proper ADFs

And pin power

Form functions

krakentools.reflectorhg.solve_ants_2d_nodes()

Group constant generation

27/09/2022 VTT – beyond the obvious

Serpent 2D

Infinite lattice

calculations

for fuel

assemblies

fuel assembly

infinite lattice

group constants

Group constant

parametrization

Ants 3D full

core

calculation

parametrized

group constant

library

Radial reflector

discontinuity

factor

calculation

Radial reflector

group constants

incl. DFs

reflector

group constants

without DFs

full core

heterogeneous

fluxes and

currents

ADFs

ADF and form

function

calculation

FA GCs

With proper ADFs

And pin power

Form functions

Serpent 3D

full core /

minicore

calculation

including

reflectors

Serpent 2D

full core

calculation

including

reflectors

Axial reflector

group constants

(no zDFs)

Best practices calculation chain
Axial reflector homogenization

Serpent 3D

full core /

minicore

calculation

including

reflectors

Axial reflector

group constants

(no zDFs)
 Rather similar to radial reflector homogenization, but need

a 3D model:
• Single assembly.

• Colorset.

• Full core.

 May need control rod branches?

 Superimposed universes set up similar to radial reflector.

 Axial discontinuity factors could be calculated similar to radial

ones.

Group constant generation

27/09/2022 VTT – beyond the obvious

Serpent 2D

Infinite lattice

calculations

for fuel

assemblies

fuel assembly

infinite lattice

group constants

Group constant

parametrization

Ants 3D full

core

calculation

parametrized

group constant

library

Radial reflector

discontinuity

factor

calculation

Radial reflector

group constants

incl. DFs

reflector

group constants

without DFs

full core

heterogeneous

fluxes and

currents

ADFs

ADF and form

function

calculation

FA GCs

With proper ADFs

And pin power

Form functions

Serpent 3D

full core /

minicore

calculation

including

reflectors

Serpent 2D

full core

calculation

including

reflectors

Axial reflector

group constants

(no zDFs)

 Generic polynomial model implemented in Ants[9] with a polynomial fit

for momentary state parameters. (Tfuel , Tcool , ρcool , CB).

 Control rod, spacer grid and instrumentation tube are treated as select variables with

separate nominal values and polynomial coefficients tabulated for each possible

combination.

 History effects currently handled using a plutonium history approach[10]

(with microdepletion).

27/09/2022 VTT – beyond the obvious

Group constant parametrization

[9] V. Valtavirta, A. Rintala. “Specifications for the generic polynomial group constant model of Ants”,

Research report (public), VTT-R-00154-21, 2021.

[10] Y. Bilodid. “Spectral history modelling in the reactor dynamics code DYN3D”, PhD thesis,

Technical University of Dresden, 2014 (HZDR-051).

krakentools.groupconstants.genpoly

Run some Ants calculations

27/09/2022 VTT – beyond the obvious

Example of Ants fuel cycle simulations

Top left: Boron letdown curve.

Top right: Moderator temperature reactivity coefficient.

Bottom left: Instantaneous hot shutdown margin.

Bottom right: Control rod group worths.

Valtavirta, V., Tuominen, R. “A simple reactor core simulator based on VTT's

Cerberus Python package” ANS M&C 2021, April 11-15, 2021, Raleigh, NC

Automatic evaluation of licensing relevant

data during the simulation of an SMR

operating cycle. Verification by switching one

physics from reduced order solver (Ants) to a

high-fidelity one (Serpent), while Kharon and

SuperFINIX models are kept constant

B

C C

C A C

B A A B

C A C

C C

B

Bring back nuclide data from Ants to
Serpent

27/09/2022 VTT – beyond the obvious

Serpent model based on Ants results

27/09/2022 VTT – beyond the obvious

 We might have nuclide densities for each node in the Ants

simulation available through microdepletion.

 How to bring these back to Serpent?

1. Serpent model with depletion zone division.

2. Setup correct material volumes for Serpent model.

3. Run a short decay calculation with “set rfw” to get binary restart

file with atomic densities.

4. Figure out where each material zone is in Serpent by running

“sss2 -matpos <coordinates_file> <input_file>”

5. Use KrakenTools to read in binary restart file and write the

atomic densities you want for each material zone.

6. Run Serpent with “set rfr” to read atomic densities from binary

restart.

Serpent model based on Ants results

27/09/2022 VTT – beyond the obvious

 We might have nuclide densities for each node in the Ants

simulation available through microdepletion.

 How to bring these back to Serpent?

1. Serpent model with depletion zone division.

2. Setup correct material volumes for Serpent model.

3. Run a short decay calculation with “set rfw” to get binary restart

file with atomic densities.

4. Figure out where each material zone is in Serpent by running

“sss2 -matpos <coordinates_file> <input_file>”

5. Use KrakenTools to read in binary restart file and write the

atomic densities you want for each material zone.

6. Run Serpent with “set rfr” to read atomic densities from binary

restart.

Summary

27/09/2022 VTT – beyond the obvious

27/09/2022 VTT – beyond the obvious

 Serpent has been developed for group constant generation from the start.

 In the recent years, the application of Serpent for such tasks at VTT has

started in earnest.

 The process of generating group constants for fuel cycle simulations is

starting to be pretty clear:
• Fuel assemblies, reflector regions, proper DFs and form functions.

• Use of branch cards for setting up history and branch conditions.

• Use of casematrix to set up the calculation matrix and run it efficiently.

 Still a good amount of work in the future:
• Effects of statistics.

• Time constants (lambdas and betas with ENDF/B have issues).

• Work thus far on PWRs and VVERs. BWRs need own parametrization.

• Not to mention non-LWR applications.

Summary

Ville Valtavirta

ville.valtavirta@vtt.fi

27/09/2022 VTT – beyond the obvious

