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1. Introduction
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Introduction: Nuclear Safeguards
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Why
• Nuclear material should be used only for peaceful 

purposes
• Accountancy of nuclear materials

What

• With respect to verification of spent nuclear fuel, an 
inspector verifies operators’ declarations

• Burnup, Cooling time, Initial enrichment, Fissile-
content

• Gross defect and partial defect verification

How

• Isotopic composition of fuel depends on reactor 
operation and fuel history

• Non-destructive (gamma, neutron radiation, 
Cherenkov radiation)



Verification of SNF

Fork detector measurement of a 17 × 17 PWR assembly being 
performed in Sweden.
Image source: [3]

The new SFAT in its stainless steel container with the 
telescoping mechanism and ultrasonic positioning system. 
Image source: [2]

6

A schematic of the measurement situation when 
using the DCVD. Image source: [1]

Fork detector image (Figure 3) from 
https://www.osti.gov/servlets/purl/
1424458

SFAT detector image from 
https://core.ac.uk/download/pdf/20
6032639.pdf



2. SNF Quivers
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Quivers
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An archer’s case for 
holding arrows

Cluster of stainless 
steel tubes to house 

damaged fuel
(cladding rupture)

Designed by 
Westinghouse

Identical dimensions 
as regular fuel.

No special handling 
equipment 
required.

Image source: [6]



Quiver specifications

PWR Quivers
• Houses damaged PWR 

fuel rods
• Capacity: 30-60 PWR 

rods
• Overall dimensions 

identical to typical PWR 
fuel

BWR Quivers
• Houses damaged/leaking 

BWR fuel rods
• Capacity: 14-28 BWR 

rods
• Overall dimensions 

identical to typical BWR 
fuel
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1. Actual design may depend on request
2. But in Sweden there is one BWR and one PWR type
3. Temporary lid and long-term storage lid
4. After closure: water evacuated, filled with helium
5. New product (ca. 20 in Sweden)

Video on loading of LWR quivers courtesy of Westinghouse Electric : https://www.youtube.com/watch?v=SNtszjtYKzc



LWR quivers
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Left: BWR quiver, Right: PWR Quiver from Westinghouse 
Electric AB Sweden. Image source: [4]

Left: BWR assembly head, Right: PWR assembly head. Image 
source: [5]



3. Methodology
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Methodology
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Depletion 
calculations

ORIGEN-ARP

Operational history
(Vattenfall)

Quiver geometry
(Westinghouse)

Radiation transport
Variance reduction

SERPENT2Source term
Rod material Flux,

Reaction 
rates



Quiver fuel content
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PWR and BWR quiver fuel content in BU-CT space. 



PWR SFAT response
l Only the upper 50 cm of the rods hold active source 

l Source energy distribution was omitted

l Monoenergetic 662 keV (emission rate from ORIGEN-
ARP in the 600-700 keV bin) in each pin

14Left: Computed gamma emission spectrum from the fuel rods. Right: Computed neutron emission spectrum from the fuel rods.
Image source: [6]



PWR quiver & SFAT model
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Left: Cross-section of quiver showing SS lid. Right: Array of 35 fuel pins in quiver (top view). Bottom: The SFAT model used in the analysis.
Image source: [6]



BWR quiver & EURATOM Fork model
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Left: BWR quiver with top lid. Center: Fuel tube arrangement inside the BWR quiver (top view) with the FORK arms positioned around it. Right: Cross-section of Fork arm 
showing gamma and neutron chambers. Image source: [7]

Fission chambers
Ionization chamber



4. Results
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PWR and BWR flux mesh tally 
results

18Top Left: Computed gamma flux from PWR quiver. Top Right: Computed neutron flux from PWR quiver. Image source: [6]
Bottom Left: Computed gamma flux from BWR quiver. Bottom Right: Computed gamma flux from BWR quiver. Image source: [7]



BWR Fork response

l Active source defined over entire fuel length

l Entire source energy distribution was used

l Use of appropriate reaction rate estimator with the help of 

ENDF MT reaction channel selectors

l Obtained estimates of fission rate and total dose rate with 

ICRP2.1 and ANSI/ANS flux-to-dose rate converters.
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BWR Fork response results

20

Computed rod-wise contribution to 
gamma flux (top bold text) and neutron 
flux (bottom bold-italicized text) at 
different positions of the Fork (marked 
with labels in each sub-figure). 
Contributions are shown as a 
percentage of total flux. Image source: [7]

Calculated 
Parameter Parameter Value

Dose rate 403 ± 41 Sv/h

Neutron counts 41 ± 3 cps (Channel A)
25 ± 3 cps (Channel B)



PWR SFAT response results

21Left: SFAT response after Implementation of various VR regimes. Image source: [6] Right: Variation of SFAT counts vs. relative error. 

l VR scheme was applied using weight-windows
– 16 global variance reduction iterations
– 1 step optimized for the steel tube
– 1 step optimized for collimator slit
– 1 step optimized for detector

l Unsure if VR scheme can be trusted due to low count rates (3 counts/5 mins). Needs 
refinement. 
– An F5 tally like semi-deterministic next event generator might be a better choice to get the response



Conclusions
• Serpent’s versatility enabled easy set-up of full scale 3D 

models of fuel, source terms as well as overall quiver 
geometry

• Ability to compute fluxes and desired detector responses – of 
great benefit without much headache

• Availability of variance reduction routine allowed estimation of 
detector counts in very low flux environments

• From results for PWRq+SFAT: no detectable signal in SFAT 
and BWRq+Fork: measurable count rates for the Fork
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