China Experimental Fast Reactor (CEFR): transient simulation of the control rod drop tests with Serpent

Emil Fridman (HZDR)

Mitglied der Helmholtz-Gemeinschaft

Content

- A quick overview of CEFR
- Description of the CR drop experiments
- Computational methodology
- Results

CEFR overview

- CEFR China Experimental Fast Reactor
- Located at CIAE near Beijing
- First SFR operated in China
- 65MW_{th} pool-type SFR
- 79 fuel sub-assemblies
- 64.4 wt% enriched UO2 fuel

Mitglied der Helmholtz-Gemeinschaft

Dr. E. Fridman | e.fridman@hzdr.de

CEFR reactivity control system

- 8 control rods
- 2 regulating CRs (RE1 and RE2)
 - Fine power control
 - natural B10
- 3 shim CRs (SH1, SH2, and SH3)
 - Large reactivity changes
 - 92% enriched B10.
- 3 safety CRs (SA1, SA2, and SA3)
 - Emergency shutdown
 - with 92% enriched B10

Rod drop test for evaluation of the CR worth

- Part of the physical start-up tests performed in 2010
- Isothermal CZP conditions at 245°C
- Real-time reactivity calculation
- Based on the source range detector data

Our objectives

- Simulation of the CEFR CR drop transients with Serpent
- Evaluation of the integral CR worth (CRW)
- Validation against the measurement data

Considered measurements

Dropped CR	Drop duration, sec	Drop speed, cm/sec
RE1	2.5	20.1
RE2	2.5	19.8
SH1	2.0	24.9
SH2	2.0	25.0
SH3	2.0	24.6
SA1	0.5	100.4
SA2	0.5	98.7
SA3	0.5	102.0

Transient modeling of the CR drop test

- Stage 1: Static simulation to get a source of neutrons and precursors
- Stage 2: Dynamic simulation of the CR drop process
- Initiation of the drop at t=0.5 sec
- Step-wise CR position update via time-dependent geometry transformation
- CRW estimation
 - Static method: based on two eigenvalue Monte Carlo calculations
 - Dynamic method: using dynamic reactivity

Transient modeling of the CR drop test

Dropped CR	Drop duration, sec	Drop speed, cm/sec	Simulated time interval, sec	Position update, sec
RE1	2.5	20.1	7	0.1
RE2	2.5	19.8	7	0.1
SH1	2.0	24.9	7	0.1
SH2	2.0	25.0	7	0.1
SH3	2.0	24.6	7	0.1
SA1	0.5	100.4	5	0.05
SA2	0.5	98.7	5	0.05
SA3	0.5	102.0	5	0.05

Mitglied der Helmholtz-Gemeinschaft

Dr. E. Fridman | e.fridman@hzdr.de

Calculation of dynamic reactivity by two methods

• Inverse point kinetics (IPK):

$$\rho_{IPK}(t) = \frac{\Lambda}{n(t)} \frac{dn(t)}{dt} + \beta - \frac{n(0)}{n(t)} \sum_{i=1}^{nd} \beta_i e^{-\lambda_i t} - \frac{1}{n(t)} \sum_{i=1}^{nd} \lambda_i \beta_i e^{-\lambda_i t} \int_0^t e^{\lambda_i \tau} n(\tau) d\tau$$

• Instant neutron balance (NB):

$$keff_{NB}(t) = \frac{gain}{loss} = \frac{P(t)}{C(t) + F(t) + L(t) - S(t)}$$
$$\rho_{NB}(t) = \frac{keff_{NB}(t) - 1}{keff_{NB}(t)}$$

- *IPK* can be solved both globally or locally
- **NB** can be solved locally only

Results

Mitglied der Helmholtz-Gemeinschaft Dr. E. Fridman | e.fridman@hzdr.de

Neutron population and reactivity: Shim rods

Neutron population and reactivity: Safety rods

Neutron population and reactivity: Regulating rods

Visualization of the CRW evaluation approach

Measured and calculated CRWs (values)

Measured and calculated CRWs (differences)

Mitglied der Helmholtz-Gemeinschaft Dr. E. Fridman | e.fridman@hzdr.de

Summary

- Serpent was successfully tested vs the real-life fast reactor experiments
- CRW C/E values agree well within the measurement uncertainty
- NB and IPK results are in an excellent agreement
 - Can be seen as complementary approaches
 - However, NB cannot be applied locally (e.g. detector simulation)
- Strong potential to produce hi-fi references solutions in transient analyses

Thank you for your attention!

Mitglied der Helmholtz-Gemeinschaft Dr. E. Fridman | e.fridman@hzdr.de