
Simple, stable Monte Carlo and depletion

Paul Cosgrove, Eugene Shwageraus, Geoff Parks

1

Engineering - Energy, Fluid dynamics and Turbo-machinery



Contents

❑ Monte Carlo/depletion instabilities

❑ Short time-scales

❑ Longer time-scales

❑ Iterating the corrector step

❑ Relaxing the corrector step

2



Monte Carlo/depletion instability

❑ Standard 3.66m PWR pin, uniform coolant density, reflective radial boundaries, 

vacuum axial boundaries

❑ 20 day time-steps at most, up to 180 days of burn-up

❑ 30,000 particles per cycle, 2,000 active cycles, 200 inactive cycles
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Short time-scales

A number of authors have shown confounding behaviour with 

coupled MC/burn-up on time-scales ~hours

❑ Isotalo et al. (2013): PWR pin, fully reflective boundaries, 15 

minute time-steps – oscillations trigger

❑ Josey (2017): same problem, 3hour steps, much larger statistics –

oscillations trigger even when using Stochastic Implicit Euler (SIE)

❑ Johnson & Kotlyar (2018): variable coolant density, axial vacuum 

boundaries <1 day step – all burn-up schemes disagree significantly
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Short time-scales

❑ Looks to be driven by neutron clustering: few particles/cycle → 

incorrect transport solution → ‘physical’ xenon oscillation

❑ Take a PWR pin, fully reflective boundaries, 1 hour time-steps,10 

burnable regions, explicit Euler scheme

❑ Three different settings:

➢ ‘Common practice’: 30,000 particles/cycle, 500 active, 100 inactive

➢ 30,000 particles/cycle, 5,000 active, 10,000 inactive

➢ 3,000,000 particles/cycle, 50 active, 100 inactive
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Short time-scales
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Even explicit Euler appears quite adequate to resolve the correct behaviour 

for this problem

Look at the flux and xenon density in a single burnable region



Longer time-scales

❑ Accounting for clustering does not seem sufficient to prevent 

instabilities on longer time-scales

❑ Take another PWR pin: 3.66m tall, axial vacuum boundaries, 

uniform coolant density

❑ Settings: 3,000,000 particles/cycle, 60 active, 10 inactive, 

accelerated by Serpent’s response matrix solver

❑ Burn with maximum time-steps of 20 days and 60 days using the 

standard PC scheme
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Longer time-scales
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❑ While many particles/cycle improves results, solution eventually becomes non-

physical, regardless of step-length

❑ Observe classical numerical instability behaviour where larger time-steps lead to 

an erroneous solution more quickly

Flux asymmetry with time Final flux profiles



Iterating the corrector step

❑ In classical predictor-corrector methods, there is an explicit 

(unstable) predictor step and an implicit (stable) corrector step

❑ The corrector attempts to solve the following equation for the 

future nuclide density vector:

𝑵(𝟏) = 𝒆 𝑨𝑩𝑶𝑺𝒘𝑩𝑶𝑺+𝑨 𝑵 𝟎 𝒘𝑬𝑶𝑺 𝚫𝒕𝑵𝑩𝑶𝑺 = 𝑭(𝑵(𝟎))

❑ Instability might be due to 𝑵(𝟏) being insufficiently converged –

what if we iterate?

𝑵(𝒌+𝟏) = 𝑭(𝑵(𝒌))
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Iterating the corrector step

❑ Using a modified version of Serpent, burn-up information is output 

and depletion is performed by an external MATLAB script

❑ Allows for iterated corrector (i.e., repeat transport and depletion)

❑ Done for the PWR pin with axial vacuum boundaries, uniform 

coolant density

❑ CE/LI (regular PC), CE/LI with 10 substeps, and LE/LI with 10 

substeps are used with 1 to 3 corrector iterations for 60 day max. 

steps

❑ 2,000,000 particles/cycle, 80 active, 10 inactive, response matrix 

acceleration
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Iterating the corrector step
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❑ Iteration does not improve things – either the corrector step is itself 

unstable (for the given time-step) or it converges extremely slowly

❑ Perhaps unsurprisingly, the LE/LI scheme appears slightly more 

unstable due to the LE step



Relaxing the corrector step

❑ Relaxation can help stabilise the iterated fixed-point iteration:

𝑵(𝒌+𝟏) = 𝜶𝑭 𝑵 𝒌 + (𝟏 − 𝜶)𝑵 𝒌

❑ This is what stochastic-implicit methods do, but with an iteration-

dependent relaxation:

𝜶𝒌 =
𝟏

𝒌+𝟏

❑ However, SI-methods:

➢ Require >10 iterations for long time-steps

➢ Equivalent to averaging over iterations – updates become marginal

➢ May not be optimal when accounting for clustering
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Relaxing the corrector step

❑ Consider the same problems as before but varying the relaxation 

factor from 0.3 to 0.6 and including the SI relaxation

❑ Use each scheme: CE/LI, CE/LI with 10 substeps, and LE/LI with 10 

substeps

❑ Repeat for 1 to 3 corrector iterations
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Relaxing the corrector step – CE/LI with no substeps
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Quite mild relaxation, even without iteration, is adequate – however, too 

aggressive a relaxation may damage accuracy (over-reliance on predictor)



Relaxing the corrector step – CE/LI with 10 substeps
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Marginally more unstable than CE/LI without substeps, although 3 iterations 

with relaxation all appear (mostly) stable



Relaxing the corrector step – LE/LI with 10 substeps
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Addition of LE impacts stability greatly – appears to require 3 corrector iterations 

with substantial relaxation



Relaxing the corrector step – LE/LI with 10 substeps

❑ How about splitting the stats over 3 corrector iterations?

❑ Compare 3,000,000/80/10 (accel.)  with 3 correctors where the 

active cycles are split, using SIE and a 0.3 relaxation

17



Conclusions

❑ Short time-scale instabilities appear to be primarily due to 

clustering-contaminated transport solutions

❑ Longer time-scale instabilities can be more akin to classical 

numerical instability

❑ The corrector step is ineffective at locating the fixed-point for time-

steps on the order of 20+ days

❑ Relaxing the corrector step with a fixed relaxation factor can be 

effective in stabilising the problem – a fixed relaxation is often be 

more efficient than an SI relaxation schedule
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Thanks for listening!
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Back-up
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Back-up – flux error for short-time burn-up

❑ Flux error in the reflected 

pin with a short burn-up
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Relaxing the corrector step – CE/LI with no substeps

❑ Sanity check: relaxation with and without many particles per 

generation

❑ Compare 30,000/800/200 vs. 3,000,000/80/10 (accel.) 
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Error in the eigenvalue

❑ Choose 3 iterations, relaxation factor of 0.3 as reference:
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