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The Fission Matrix method is in theory fairly

simple

1 N
Fy = Ez a;, ;K
=1

F; = fission neutrons in cell {
a; j =number of neutrons created in cell {
due to a neutron born in cell j

Fol4r
Tk

* Calculate a; ; using Monte Carlo

* Solve linear system for ﬁ, k
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Fission matrices have been used for several
purposes

 Criticality convergence acceleration / checking
* Higher-order modes / importance
* Two-step hybrid calculation

— Pre-calculate fission matrices for “representative”
problems

— Use pre-calculated data to estimate fission matrix
for particular problem
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Serpent can tally fission matrices in a set of
fixed-source or a criticality calculation

Criticality Fixed Source
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RAPID uses fission matrix methods for fast
calculations

* Pre-calculate assembly-
level fission matrices using
fixed-source calculations

e Combine using geometric

symmetry and similarity to =
simulate different loading
patterns

Walters et al., 2014
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RAPID has been applied to the BEAVRS
benchmark

> Red: 1.6%

> Yellow: 2.4%

> Blue: 3.1%

193 fuel assemblies
Each assembly has 264 fuel pins and 25 guide tubesina 17 X 17 lattice
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Adjacent fuel assemblies with different
enrichments may induce errors in RAPID

o) Code was originally
. designed for spent-fuel
ol pools, where heterogeneity
o problems did not occur due
> 1197 to strong absorbers
e between fuel assemblies
o 2
1.1
34 4 [1.2)
17 1 [2.5)
0- | [cEER))

X-Pin
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Methods were added to RAPID to correct
enrichment-heterogeneity-induced errors

Without correction Corrected
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Methods were added to RAPID to correct

enrichment-heterogeneity-induced errors
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New methods incur only a small up-front
computational cost

Model Description

Number of

Time (CPU-hr)

New method

Calculation Geometry Source Variations | per Var. | Total
a; ; FM 1) Inf. assemblies | Single pin 7x39 0.45 | 121.9
2) Standard core | Criticality 1 3.8
_ 3) Inf. core Fixed from (2) 1 50.5
Refl. correction 156.2
4) Inf. radial core | Fixed from (2) 1 50.7
5) Inf. axial core | Fixed from (2) 1 51.2
Enrich. correction | 6) Four-assembly | Uniform 3x3 (exact) 3.3 | 20.7

4

Total (exact R)

oo
(o}
=1
o

<— Total

Correction method requires 9 fixed source calculations on four-
assembly geometry
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Accuracy of kand 3D fission source
estimation is improved

Uncertainty (Serpent) and relative error (RAPID)

2D pin-wise 3D (100 axial levels)

Wall-clock

Time

Method Fery kepp RMS  MAX RMS MAX (20 cores)
Serpent 1.00402 | 0.5 pem 0.18% 0.43%  1.86% 11.35% 80 hr
RAPID (old) 1.00245 | -156 pcm  6.26% 22.27% 6.63% 57.53% 2.4 min
RAPID (exact) 1.00427 | 25 pem 0.54% 2.39%  2.26% 54.29% 2.4 min

Ken and Mary Alice Lindquist Department of Nuclear Engineering

v PennState
College of Engineering



Presentation Outline

RAPID Matl. Correction Ratios Temperature/Control Methods
(Donghao He) for TRIGA and NTP (Adam Rau)

Fission-Matrix-Based Xenon Transient Fission Matrix in TREAT
Transients (Jake Eichenlaub) Reactor (Alvaro Pizarro-Vallejos)

xxxx

PN K LM w
| HEEEEEN
11 11

Temperature (K)
£ 5 8

EEEEEEEE

| HEEEEEN|

@ PennState
Ken and Mary Alice Lindquist Department of Nuclear Engineering College of Engineering



We have also developed fission matrix
methods for the Penn State TRIGA reactor

* TRIGA pool-type reactor 00000
e UZrH, fuel (“cell effect” feedback 000000
fuel ( ) 5000000
 Four control rods 00 0000
e Three fuel-followed 'QQ_°°°°°
* One air-followed (pneumatically- '°°°°"“--’]°°°°°.°°°°
actuated “transient” rod) 0000000
e Smallcore—47 x41 x38 cm D°°°°°°°G°°°°
(approx.) C-X-X-X-X-)

* Natural circulation cooling
e 1 MW nominal steady-state power
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Several Serpent options simplify this work

u« ” : : 00000

* “set fmtx” option for calculating 000000
iSSi iX i iticalitv si i 0000000
fission matrix in Crltlca.h.ty s_|mulat|on 006 6600
* Easy to perform criticality 0000000000
calculations on small core 00 00 0000

e Cartesian grid compatible with

regular hexagonal mesh NYY YY)
* Fuel temperature profiles simulated ... 000000
with multiphysics interface

* Use same options even when
temperature profile is uniform
(since goal is code-to-code
verification)

0.921

09157

Shannon Entropy [-]

0.905 ) ; ; ; ]
0 10 20 30 40 50 60
Cycle [1]

Set fmtx: https.//ttuki.vtt.fi/serpent/viewtopic.php ?f=24&t=2098&p=5370&hilit=fmtx#p5370
Multiphysics Interface: http://serpent.vtt.fi/mediawiki/index.php/Multi-physics _interface

16
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https://ttuki.vtt.fi/serpent/viewtopic.php?f=24&t=2098&p=5370&hilit=fmtx#p5370
http://serpent.vtt.fi/mediawiki/index.php/Multi-physics_interface

We pre-calculate fission matrices at different
uniform temperatures and control positions

Control Rod Position [cm]
0.00 7.62 15.24 22.86 30.48 38.10

300 @ ® ® ® ® 0\ —~
< -
—

Q 475 @ ® ® ® ® ®
S
‘-
S
Y 650@ ® ® ® ® ®
Q IhEm
& \
1
§ 825 @ ® ® ® ® ®
(W
1000 @ ® ® ® ® ®

(5 uniform fuel temperatures) -
(6 control rod positions) =
30 calculations
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Pre-calculated fission matrices can be
combined to simulate any temperature profile

Fit 2D polynomial to
each fission matrix
element

\

a;; = fij(Tr i, 2)

y.

Assume element is
function of destination
temperature

College of Engineering
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Steady-state temperatures and rod positions
were found by Picard iteration with TRACE

P(x,y,z)
) Liquid Velocity, Azimuthal Sector 2
- o 1] LTI
Estimate AEEREIN
critical ) F.,...;H'F’;.I‘ .
control rod S
position 2 Hi'ﬂ
0 el TEI .y
aphi .§$él‘¢‘ 'R
E sz | ,
L
T(x,y,2)
Fission Matrix Calculation TRACE Thermal-Hydraulics

'3 PennState
Ken and Mary Alice Lindquist Department of Nuclear Engineering College of Engineering



Code-to-code verification is performed with
Serpent

Ko Error 3D RMS Fission Source
60 3
; 0.8
50 - S
— w 06_
= &
§30— c 0.4
o 3
g 207 w 027 L |
= =
10 A «
€ 0.0-
[e]
07 =
. . . . . —02L T . B S .
200 400 600 800 1000 200 400 600 800 1000
Power [kW] Power [kW]

* Critical temperatures / rod positions from 50 kW to 1 MW
* K Within 60 pcm

3D RMS Source Error within 1%
* 3D Max. Source Error within 3%
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After pre-calculation, fission matrix solutions
are completed in seconds

For Database:

40,000 neutrons/cycle
12,000 active cycles
10 inactive cycles

Fission Matrix Database Calculation (one calc.) 80 CPU-hrs
Fission Matrix Database Calculation (total) 2400 CPU-hrs

Fission Matrix Assembly / Solution (one calc.) 1.6 CPU-sec
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Method is validated against historic clean-core
experimental data
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The same methods have been applied to a
Nuclear Thermal Propulsion type reactor

(U,Zr)C composite fuel

ZrH4{ - moderator
Separated from fuel
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Despite different application, method has
similar accuracy on NTP and TRIGA

Normalized Error
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Short operation times require calculation of
xenon dynamics

15 oM
25 =10

oy

o
3
o

/ lodine
| / Xenon

N
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154

Concentration (atoms/cmS]

Concentration [atomslcm3]

}

o
3

0 50 100 150 200

Time [hours] Time [hours] 0 o Detector Cells (#)
ar
Frie YiXpp(r,t) — AI(r,t)
0X

= =yxZp(rt) + LI, t) — AX(r,t) — aFp(r, )X (r,t)

F = lAﬁ’ F o VxIrp(r,t) [ Xenon production assumed proportional
k to fission source
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Presentation Outline

RAPID Matl. Correction Ratios
(Donghao He)

Fission-Matrix-Based Xenon
Transients (Jake Eichenlaub)

xxxx
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Temperature/Control Methods
for TRIGA and NTP (Adam Rau)

Transient Fission Matrix in TREAT
Reactor (Alvaro Pizarro-Vallejos)
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Transient fission matrix methods have been
investigated for the TREAT reactor
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Thank youl!
Questions?
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Backup Slides
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The time of the RAPID database calculation is summai

Model Description

Number of

Time (CPU-hr)

Calculation Geometry Source Variations | per Var. | Total
a; ; FM 1) Inf. assemblies | Single pin 7439 0.45 | 121.9
2) Standard core | Criticality 1 3.8
3) Inf. core Fixed from (2) 1 50.5
Refl. correction 156.2
4) Inf. radial core | Fixed from (2) 1 50.7
5) Inf. axial core | Fixed from (2) 1 51.2
Enrich. correction | 6) Four-assembly | Uniform 2 (interp) 3.3 6.6
7) Four-assembly | Uniform 3x3 (exact) 3.3 29.7
BA correction 8) Four-assembly | Uniform 4x16 3.3 52.8
Local correction 9) Four-assembly | Criticality 17 50 850
Total (exact R) 337.5
Total (interp. R) 314.4
Total (local. R) 1128

Ken and Mary Alice Lindquist Department of Nuclear Engineering
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RAFID result1s compared to the >erpent 2 reiference

calculation

Uncertainty (Serpent) and relative error (RAPID) | Wall-clock

2D pin-wise 3D (100 axial levels) Time

Method Fery kepp RMS  MAX RMS MAX (20 cores)
Serpent 1.00402 | 0.5 pem  0.18%  0.43%  1.86% 11.35% 80 hr
RAPID (old) 1.00245 [-156 pcm] 6.26% 22.27% 6.63% 57.53% 2.4 min
RAPID (interp.) 1.00428 | 26 pcm 0.75% 2.88%  2.30% 54.96% 2.4 min
RAPID (exact)  1.00427 | 25 pem 0.54% 2.39%  2.26% 54.29% 2.4 min
RAPID (local) 1.00411 9pecm 0.60% 2.11%  2.28% 54.51% 2.4 min

_5 Pre-calculation time:
Note: 1 pcm = 107> k.

» Exact: 16.8 hours

» Interpolated: 15.7 hours

» Localized: 56.4 hou
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Test Problems: Problem Geometry

15

* Used Serpent 2.1.30 for Monte Carlo

e Single fuel pin
- Graphite reflector at ends
- Fresh 8.5% U-ZrH, . fuel

* Boundary conditions:
- Reflective in X-Y
- Vacuumin Z

e Vary axial fuel temperature

ﬁ\

Reflectlve Boundary

* Tally fission source in 128 axial bins

PennState

v PennState
College of Engineering
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Method: Ratio-Correction in Present Work

* Pre-calculation:
- Simulate one additional, non-uniform case

- Obtain true fission matrix A,,,. from (Monte
Carlo) criticality calculation

- Construct A, 4 r foralli]
s foralll,

- Calculate matrix R atrue,ij/aend,ij =T

R

34~ PennState
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Method: Ratio-Correction in Present Work

* Apply to arbitrary temperature distribution:

- Superimpose correction matrix R for each
temperature change in arbitrary profile

_II

- v

d 3 \§

A

en

-3 Pennstate

3
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Method: Ratio-Correction in Present Work

10

e 1.Scale R by temperature

T T

_II v

\\\\\
A, \\\\' R R

Scale R for temperature

end

PennState

v PennState
College of Engineering
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Method: Ratio-Correction in Present Work

11

* 2.Translate R and multiply A
T T I
_II v [ g >
v - =

Aend \§ R R

Scale R for temperature Translate R and multiply

3'F-3 PennState
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Method: Ratio-Correction in Present Work

12

* 3. Repeat for all temperature changes A
T T ' —
_II [ X
v < -

Acnd \w R R

Scale R for temperature Translate R and multiply

3 -] Pennstate
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Method: Ratio-Correction in Present Work

13

* Application assumes: -II

- Geometric similarity (R independent of position) _ v
- R scales linearly with temperature &

Acd \§

3F-3 pennstate
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Results: Step Temperature Profile

29

Fission Source Distribution for Temp. Step Change (300-1000K) Source Error / Uncertainty for Temp. Step Change (300-1000K)
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Results: Sine Temperature Profile

31

Sine Fuel Temperature Profile
700 T y

650
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&
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Axial Position [cm]
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Results: Sine Temperature Profile

32

Fission Source Distribution [-]

Fission Source Distribution for Sine Temperature Profile (300-650K)
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Source Error / Uncertainty for Sine Temperature Profile (300-1000K)

3

25

Relative Error / Uncertainty [%)]
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Results: Sine Temperature Profile
33

* End method produces reasonable estimate of kg
* Correction reduces source RMS error by factor of 5

* Calculation takes ~4 seconds on personal laptop

K. Relative Error Source RMS Rel. Error | Source Max. Rel. Error
[pcm] [%] [%]

End Method -2.11
Corrected End Method -39.6 0.17 0.58

PennState

r
4.
% "2 PennState
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Results: Sine Temperature Profile

34

Temp. Range [K] ks RE [pcm] Src. RMS RE [%]
End Method
300-1000 -6.4 2.41
300-650 -41 1.10
300-475 -53.1 0.47
650-1000 20.5 1.21
Corrected End Method

300-1000 7.4 0.40
300-650 -39.6 0.17
300-475 -53.8 0.14
650-1000 23.2 0.17

44~ pennState

Ken aitd Mary Alice Lindquist Department of Nuclear Engineering

Src. Max. RE [%]

o

-4.9
-2.11
-0.9
-2.82

-1.01
0.58
0.47

-0.47
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Linear Temperature Profile

Linearly increasing 300K to 1000K from bottom to top

Fission Neutron Tally [-]
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“Dirac” Temperature Profile

Uniform 300K with one “cell” elevated to 1000K

0.011r —12
Fission Matrix; End Method B — Fission Matrix (End Method) Relative Error
Fission Matrix; Ratio-Corrected Method E - Figsion Matrix (End Method) Uncertainty
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Additional Temperature Profiles

Profile - Method [-] ks RE [pcm] Src. RMS RE [%] Src. Max. RE [%)]
Linear - End 88.9 1.58 3.41

Linear - Corrected -68.4 0.25 -0.74

Dirac - End 8.4 1.38 11.09

Dirac - Corrected -26.4 0.37 -1.13

4°F-3 pennState
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Results: Step Temperature Profile

e (Calculate R:

Correction Ratio Matrix (R)

Destination Cell [-]

128

0 32 64 96
Source Cell [-]

128

I’l.2

11.1

0.9

0.8

4~ pennState
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Results: Step Temperature Profile

25

e (Calculate R:

Correction Ratio Matrix (R)
Om 7
I1.2
Temperature | = »
)] 11.
step change O
............................. e
ie)
© 11
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Results: Step Temperature Profile

26

e (Calculate R:

Correction Ratio Matrix (R)

- Most entries near
~1

Temperature
step change

Destination Cell [-]

Step-Change Temperature Profile

& 10007
o
2
o
8
£
K 128
§ — ] . L L L
w300 0 32 64 95 128

10 20 30 40 :

Axial Position [cm] Source Cell [-]

-

5 ('a PennState

'3 PennState
Ken aitd Mary Alice Lindquist Department of Nuclear Engineering College of Engineering



Results: Step Temperature Profile

27
e (Calculate R:

Correction Ratio Matrix (R) - Most entries near

~1

1.2

Temperature
step change

— Entries with
' uncertainty >1% set
tol
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Results: Step Temperature Profile

28
e (Calculate R:

Correction Ratio Matrix (R) - Most entries near

~1

1.2

Temperature
step change

— Entries with
' uncertainty >1% set
tol

11

Step-Change Temperature Profile
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Steady-state temperatures / control rod
positions were found by iterating with TRACE

Liguid Velocity, Azimuthal Sectar 2

P(x,y,z
(x2) o 1] LLLTIE
Control rod i
position o _ _ Ml W '.Tf;_ M.
Fission Matrix Calculation S I H M i
‘ Tboy2) Ok
eff Tl
apnlm;*;{‘ C; W
“ ““ ““ ’== i 0 H dl;llop DDDDDDD fig‘] )
PG
. \yzn
0.94 fng
Control Rod Position  z [cm] Thermal-Hyd raullcs
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After pre-calculation, calculations are
completed in seconds/minutes

Fission Matrix Database Calculation (one calculation) 80 CPU-hrs
Fission Matrix Database Calculation (total) 2400 CPU-hrs
Fission Matrix Assembly and Solution (per fission matrix) 0.4 seconds
Uncertainty Calculation (per fission matrix) 6.2 seconds
Error Calculation / Printing / Plotting (per fission matrix) 5.4 seconds
Reading FM database and fitting polynomials (per batch) 41 seconds

'3 PennState
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The same method can be applied to Nuclear

Thermal Propulsion type reactors

(U,Zr)C composite fuel
19.75 w% enriched U-235

Jooree)

ZrH; » moderator

w

L
O
O
..

. ®

Active core
length 118 cm

Both are small cores, hexagonal loading patterns
Control geometry is different (drums vs. fuel-followed rods)
Fuel/Moderator Heterogeneity and Feedback Mechanisms are different
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Presentation Outline

» RAPID Material Correction Ratios
(Donghao He)
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RAPID uses fission matrix methods for fast
calculations

Burnup Calculation
Isotopics (SCALE/TRITON) XS

&
Source (" Detector Field-of-View calculation }
(FOV)
FM coefficients calculation \ (PENTRAN) J
(aij, by j) l
s : =\
Importance function calculation
(Fixed-source MCNP) W
(PENTRAN)
. J
(- RAPID Database )
EM Coefficients ~ Importance Function P
+  Enrichments +  Det. Types ’ & L. 55N
+  Burnup +  Det. Positions " ") ‘
+ Cooling Time + Cooling Time \ ~— p
N Y, "w .g;; @
! L

Calculate source via FM Approach: )

N
Fi= Z(ai.iFj + b;;S;)
J=1

\ J
Sr=F+S I (Total Source=Fission + Intrinsic)
(" Calculate detector response via Adjoint\
Function Methodology

. e ) VIRGINIA TECH.
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Fission Matrix Method

2. Fit polynomial coefficients to fission matrix database

(TtTTlQ) zzcukl(T(nT)) (COS(H(TLQ)))

Aij —_ Cl]V

Cii = A VT(vvT) ™
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Control Drum Angle: Summary

Control Drum Angle [deg] k. Error [pcm]  Norm. RMS Fiss. Src. Error [%] Norm. Makx. Fiss. Src. Error [%]

0 5.2 0.67 2.29
8 9.7 0.60 2.54

25 3.8 0.54 2.17

38 13 0.57 1.87

53 0.1 0.58 2.01

68 17.3 0.68 2.67

83 3.4 0.59 2.22

98 12.4 0.63 | .88

113 7.0 0.65 2.27

123 22.0 0.71 | 2.38

126 7.4 0.57 2.35

128 3.1 0.65 2.58

129 6.8 0.55 2.51

132 5.8 0.65 2.44

143 -10.6 0.53 2.11

153 11.8 0.68 -2.80

156 7.4 0.66 2.39

158 195 0.53 .88 |

159 14.6 0.62 -2.03

162 3.4 0.56 2.03

173 -8.6 0.63 -2.20 ’
180 -13.9 0.69 -2.59

v PennState
College of Engineering
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Case: Temperature Profile

e |nlet:
— Uniform 300K
e Qutlet:

— Proportional to lateral peaking factor at 300K
— Max. temp. controlled as parameter

* Linearly increasing along axis

College of Engineering
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Case: SULEU Core

e Superb Use of Low-Enriched Uranium (SULEU) Core
(Venneri et al., 2016)

* Based on heritage NERVA design
— Demonstrate feasibility of LEU

— Retains graphite-composite fuel
elements and other peripherals

* Meets NASA DRA 5.0 requirements
— Mass: 2,498 kg p
— Thrust: 35,000 Ib; i o

— Thaxt 2,850 K Venneri et al., 2016_
— Specific Impulse: 898 s

11

1.05

10.95

Fuel Element Power Normalized to Average
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Cases: Test Cases

* Fuel Temperature Cases:

— Max. Fuel Temperature set to 400, 800, 1200,
1600, 2000 K

— Control drums fully withdrawn
e Control Drum Cases:

— Control drums set to O, 8, 25, 38, 53, 68, 83, 98,
113,123, 126, 128, 129, 132, 143, 153, 156, 158,
159, 162, 173, 180 degrees

— Max. Fuel Temperature fixed at 2000 K

'3 PennState
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Cases: Test Cases

e Varied max. temperature and control drum angle separately (no
case has uniform temperature)

Varied control Max. Fuel Control Drum | Max. Fuel Control Drum
drum angle Temp. [K] Angle [deg.] | Temp. [K] Angle [deg.]
2000 0 2000 128
Varied temperature 2000 8 2000 129
2000 25 2000 132
\ 2000 38 2000 143
Max. Fuel Control Drum 2000 53 2000 153
Temp. [K] Angle [deg.] 2000 68 2000 156
400 0 2000 83 2000 158
800 0 2000 98 2000 159
1200 0 2000 113 2000 162
1600 0 2000 123 2000 173
2000 0 2000 126 2000 180 /

63
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Previous Work: Steady-State

 Rau and Walters 2018, Topham et al. 2019

— Coupled TRACE/Fission Matrix simulation of TRIGA
reactor

— Fission matrix method used to investigate
sensitivities in TRACE and validate on initial startup
data
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Features of Fission Matrices

‘ S is eigenvector of A

k

e

s 1S eigenvalue of A
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Case: SULEU Core (cont.)

* (U,Zr)C composite fuel
* ZrH,, moderator

11

* 66 cm core diameter (~26 in.)

1.05

e 16 rotating control drums on
core periphery

10.95

Fuel Element Power Normalized to Average

10.9

Venneri et al., 2016
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Features of Fission Matrices

a; =f(r, >r)
Elements of A (q,):
expected number of
neutrons induced in

cell i from a neutron
born in cell j
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Methodology: Preprocessing

1. Serpent used to pre-calculate fission matrices at
uniform fuel temperature and control drum angle

Control Drum Angle

Fuel Temperature

0° 45° 90° 135° 180°
294K @ ® ® ® ®
900K @ ® ¢ ® ®
1500K @ ® ¢ ® ®
2000K @ ® ® ® o

Ken and Mary Alice Lindquist Department of Nuclear Engineering

4 fuel temperatures
X 5 control drum angles

20 database calculations
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Fuel Temperature: Error/Uncertainty

Error/Uncertainty Ratio

4
30|
13
‘e
S,
G 0 2
(@]
Q
>.
]
30}
0

-30 -15 0 15 30
X-posn [cm]
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Normalized Error

~ fi,FM o fi,serp

| (%) Z? f L,serp
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Margins
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