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Create an ATR irradiation design meeting radiological 
exposure and safety standards which, with HFIR, can 
produce 1.5 kg Pu-238 annually by 2025.

Objective 4

Credit: Los Alamos Nat. LabCredit: Argonne Nat. Lab Credit: Brian Haeger
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Commonly Used Terms
• ATR - Advanced Test Reactor at Idaho Natl. Lab
• HFIR - High Flux Isotope Reactor at Oak Ridge Natl. Lab
• MMRTG - Multi-Mission Radioisotope Thermoelectric Generator
• Target Rod - Pellet stack assembly with cladding, plenum, and spacers
• Pellet -   NpO2- Al powder mixed and pressed together
• Plenum - Space for fission gases to go during irradiation
• Cladding - Outer aluminum coating of pellet stack
• Basket - Aluminum casing that holds targets in place
• Irradiation Facility - Aluminum container holding target baskets
• I-Position/Channel - Where target rods are placed on ATR periphery
• B-Position/Channel - Where target rods are placed closer to ATR fuel lobes
• Np-237 - Neptunium isotope that decays into plutonium when irradiated
• Pu-238 - Plutonium isotope used in RTGs for spacecraft missions
• Pu-236 - Plutonium isotope, decay daughters include 2.62 MeV gammas
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Pu-238 Reaction Scheme 6

Reaction schemes for transmuting Np into Pu (Credit: Patent US 6896716 B1 (2005))
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MMRTGs
Multi-Mission
Radioisotope
Thermoelectric
Generators
Generator running on 
heat produced from 
radioactive decay of 238Pu

Missions are typically 
labeled in required 
We(electric watts)

Credit: NASA

Credit: NASA

238Pu
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The ATR

• Irradiation of Np-237 at ATR & 
HFIR

• HFIR limited to 300-500g 
(using all positions)

• ATR I and B positions most 
readily available
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Design Specs & 
Geometry
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Design Positions

Medium I: 16 Positions, 128 Targets

Small I: 4 Positions, 4 Targets

Large I: 4 Positions, 88 Targets

Large B: 4 Positions, 4 Targets

Small B: 7 Positions, 7 Targets
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Design Positions Cont. 11
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Design Parameters

Parameter Limit
Target Rod Length 40 inches MAX

Pu-236 Concentration 2 ppm MAX

NpO2- Al Pellet Concentration (volumetric) 30% MAX

Pu-238 Quality 87% MIN

Pu-238 Conversion Ratio 10% MIN
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Methodology
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Method
• Used previous results to define optimization scope
• Modeled in Serpent 

– Used depletion analysis to observe material levels
– Simplified lattice structures for ease of editing

• Advantages of Serpent over MCNP
– Runs faster
– Advanced lattice types

• Idaho National Laboratory’s High Performance Computing system used 
for modeling
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Results
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Range of Analysis

• Varied target length from 35”, 40”, 
and 48” 

• Increased initial NpO2 conc. from 
20% to 50%
– 2% step increments

• Added targets in alternative 
positions in ATR
– Small and Large B-Positions
– Small I-Positions
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Large/Medium I-Positions

Longer targets have superior:
• Annual Pu-238 Yield (200-300 g), Pu-236 Concentration (<2 ppm), 

and Pu Quality (96-98%)
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Small I-Positions

• Low annual Pu-238 production
• 6-9% Conversion ratio
• 87-91% Quality
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Large B-Positions

• Higher annual Pu-238 production than small I-positions
• Pu-236 concentration increase to 3-4 ppm, closer to reactor fuel
• 10-14% conversion ratio, Quality only acceptable at high pellet conc.
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Small B-Positions

• Significant annual Pu-238 production from only 7 rods
• Pu-236 concentration unacceptable at 6-8 ppm
• 16-20% Conversion Ratio, but <83% Quality Unacceptable
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Individual Position Yield
40” Rod, 30% NpO2
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Note: Large I positions have 22 rods per position and medium I positions have 8.  All other 
positions have 1 rod/position.  Production increases as positions are used together.

Large I

Inner 
Med.

Outer 
Med.
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Pu-238 Production/Position

Position Target 
Quantity

238Pu 
Production (g)

236Pu Conc. (ppm)
238Pu 

Quality (%)
238Pu Conversion 

Ratio (%)

Large I 22 27.05 1.50 97.01 2.16

Medium I, inner 8 12.19 1.33 96.07 2.68

Medium I, outer 8 12.80 1.39 96.09 2.81

Small I 1 3.86 1.54 90.07 6.79

Large B 1 6.55 3.43 86.94 11.50

Small B 1 10.34 6.46 80.01 18.15

( 40” Rod, 30% NpO2 )
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Heat distribution from Serpent 
• Track total heating deposition for each 

target rod 
• Calculate decay heat in each target rod
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Analysis & 
Recommendations
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Design Recommendations
Max Yield Design:  
778.04 g of Pu-238 @ 96.72%, 3.34 ppm (Pu-236)

• 48” Rods, 50% NpO2, All I and B positions
• Ran full core instead summing individual positions; interactions are significant

Conservative Yield Design:  
350.58 g of Pu-238 @ 96.32%, 1.63 ppm (Pu-236)

• 40” Rods, 30% NpO2, All I and Large B positions (no Small B)
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Stockpile Enrichment
Assuming 16 kg of usable 78% Pu available in current stockpile:

Design Annual 87% 
Pu-238 (kg)

Pu to Add from 
Stockpile (kg)

Stockpile 
Gone (years)

All I and B Positions
48” Rods, 50% NpO2

1.456 0.869 18

I and Large B Positions
40” Rods, 30% NpO2

0.6445 0.377 42
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Conclusion
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Conclusion & Future Work
ATR/HFIR production can meet NASA’s goal, but with serious 
concessions in quality and 236Pu. In addition, ATR/HFIR positions are not 
always available.
1. Flux Traps and other High-Priority positions

a. Deal with high Pu-236 levels, low Pu-238 quality
2. Pure Np-237 Pellets

a. Deal with high Pu-236 levels, low conversion ratio
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Extra Slides
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Pu-236 Daughters 34
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Pu-236 Daughters Cont. 35
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Pu Trends Over Cycle Length

48” Rod, 
30% NpO2
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Note: Small B positions do 
not include B7 (for HSIS).
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What about the 1993 study*? 37

*B.  G.  SCHNITZLER,  “INEL  Advanced  Test  Reactor Plutonium-238 Production Feasibility Assessment,”  in “AIP 
Conference Proceedings,” (1993), vol. 271.

1993 Study 2019 Analysis

ATR Positions Utilized 3 modified Flux Traps, 
Large B, Small B, Small I

Large I, Medium I, Small 
I, Large B

Operational Cycle 288 days at power, 72 
day shutdown (24/6)

186 days at power, 180 
day shutdown (62/60)

Power Level 200 MW 105 MW

237Np Irradiated 102.1 kg 12.76 kg

238Pu Produced 11.35 kg 350 g

238Pu < 2 ppm 1.07 kg ~315 g
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Previous Designs
• PFS-3 Design Specification for ATR not incorporated in previous 

designs. Increases target size by 90%.
• Only Design 2 from previous year runs successfully.
• MCNP did not include 237Np(ɣ,n)236Np→236Pu + β- process.

Design 1 Design 4Design 3Design 2
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2018 Results 39

Design #1 #2 #3 #4

Conversion Ratio 0.038 0.030 0.033 0.025

Pu-238 (g) 129 204 193 267

Quality (%) 0.95 0.96 0.96 0.97

Pu 236 (ppm) 1.17 1.08 1.28 1.65

Number of rods 104 208 184 332

Analysis Factor 1.0000 0.6001 0.6783 0.3088


