

SFR calculations with **Serpent and Ants**

Marton Szogradi

9th Serpent UGM Georgia Tech, Atlanta, GA, USA

October 16th, 2019

Contents

- SFR benchmark with Serpent
- 2D XS generation for fast systems
- Ants neutronics code
- Benchmark with JŌYŌ MK-I

SFR benchmark with Serpent

- Two core configurations utilizing carbide and oxide fuel [1]
- Benefits and disadvantages
 - CA low linear power rate i.e. enhanced margins to fuel melting
 - OX self breeding without fertile blanket
- Comparison with collected benchmark data [2]
- Ultimate goal: reliable XS generation for nodal solver

- With JEFF-3.1.2 library, BCs from [1]
- Pressure in gas plugs (10 bar) [3]
- Doppler-effect: +1000 K perturbation (mind fuel properties)
- SVR: large deviation in benchmark data + self-shielding effect
- CRW: comparable results

*CA/OX

Ref.	\mathbf{k}_{eff}	K_{D}	SVR	CRW
Serpent	1.0031/1.0083	-945/-940	1461/1221	-4217/-6127
[2]	1.0136/1.0096	-1002/-895	2048/1932	-4326/-6092

1000

 $\Delta \rho_{SV,CA}$

800

 $\Delta \rho_{SV,OX}$

500

600

1800

*CA/OX

Simple 1D expansion model

316L SS diagrid material

$$p_1(T_1) = p_0(T_0)[1 + \alpha_{rad}(T_1 - T_0)]$$

1200

Coolant inlet temperature [K]

1400

1600

Ref.	Δho_{rad}	
Serpent	-179/-106	
[5] (OX)	-120	

- Axial expansion has smaller impact on reactivity balance than radial expansion
- Yet top of active core highly affected

$$L_f(T_1) = L_f(T_0)[1 + \alpha_f(T_1 - T_0)]$$

2D XS generation for fast systems

- Lab mouse: CA inner FA infinite lattice
- SCALE-238 micro-structure*
- 24-group equal lethargy bin structure condensed from ECCO33, mind statistics [6]
- CMM is deployed in hard spectrum for single fuel assembly [7]
- With CMM ~6 % larger values for diffusion coefficient compared to no-leakage methods

- P₁, B₁ results confirm earlier observations [8] as a new leakage term does not affect the local multi-group flux within a macro-group
- FM, out-scat. practically similar results

- Scattering matrices (corrected vs. no-leakage)
 - B₁ and out-scattering very similar
 - P₁ shifted slightly towards larger differences

CMM - smaller overestimates

$$\boldsymbol{\Sigma}_{\mathbf{s}} = \begin{bmatrix} \boldsymbol{\Sigma}_{s,g \to g} & \boldsymbol{\Sigma}_{s,g+1 \to g} & \dots & \dots & \boldsymbol{\Sigma}_{s,n \to g} \\ \boldsymbol{\Sigma}_{s,g \to g+1} & \boldsymbol{\Sigma}_{s,g+1 \to g+1} & \dots & \dots & \boldsymbol{\Sigma}_{s,n \to g+1} \\ \boldsymbol{\Sigma}_{s,g \to g+2} & \boldsymbol{\Sigma}_{s,g+1 \to g+2} & \boldsymbol{\Sigma}_{s,g+2 \to g+2} & \dots & \boldsymbol{\Sigma}_{s,n \to g+2} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \boldsymbol{\Sigma}_{s,g \to n} & \boldsymbol{\Sigma}_{s,g+1 \to n} & \dots & \boldsymbol{\Sigma}_{s,n-1 \to n} & \boldsymbol{\Sigma}_{s,n \to n} \end{bmatrix}$$

Ants neutronics code

- Reduced order nodal diffusion solver, based on AFEN/FENM approach [9]
- The algorithm solves nodal variables without transverse integration
 - (+) for hexa geometry
 - (-) for solver speed
- Has been tested in PWR, BWR and 2D homogenization cases [10,11]
- Required: XSs, geometry, convergence criteria
- Goal: validation + development

- 3D SFR inputs same BCs as for Serpent
- Fine/simplified mesh on outer core-radial reflector interface in order to assess flux sensitivity on fissile/non-fissile volume interface

- CA results under review, OX core calculations are in progress...
- Asymmetry from incorrect OX gas plug XSs
 - with CA gas XS the solution is tilted but symmetric

Axial power distribution

- Discrepancy increases in the upper section
- CR/SR assemblies are sitting over active core → absorber XSs have to be revised
- < 0.5 % deviation in lower core

Radial power distribution

- (blue) fine case error {-0.98;0.14} %
- (green) simplified case error {-1.75;0.75} %
- Slight underestimate in the inner core
- Growing discrepancies with coarser mesh

Benchmark with JŌYŌ MK-I

- Based on Jōyō MK-I reactor's experimental data published by JAEA [12]
- 3D Serpent models for criticality, CRW and SVR tests
- 3D and 2D solution comparison with MVP code (in progress)
- Study of few-group XS generation methods e.g. different CMM methods

XZ-plot with neutron source (9Be) and SR2

YZ-plot with RR1

Criticality case

Ref.	k _{eff} ± σ [-]
Benchmark [12]	0.9981 ± 1.8E-3
Serpent	0.9998 ± 1.5E-4
Avg. diff. [%]	+ 0.17

$J\bar{o}y\bar{o}$ MK-I benchmark SVR core

Serpent vs experiment:

• CRW diff.: -4.4 %

• β_{eff} diff.: +0.33 %

$$SVR/CRW = \frac{k_1 - k_2}{k_1 k_2} \frac{1}{\beta_{eff}} \cdot 100$$

■ SVR diff.: -7.8 %

 $\beta_{\rm eff}$ diff.: +0.21 %

SVR comparison with uncertainty ranges for JOYO MK-I

The road ahead...

- Building fast reactor expertise
- Group-constant generation validation (SFRs, JŌYŌ, ?)
 with focus on colorset models
- Ants studies and development (homogenization, ADFs)
- Higher level of automatization in pre- and postprocessing for reduced order solver
- Publications...

Marton Szogradi marton.szogradi@vtt.fi +358 142 4467

www.vtt.fi

Thank you for your attention!