

Using Serpent in nuclear fusion analysis

Bethany Colling, A. Burns, A. Davis, A. Turner

Nuclear fusion

- Potential source for future baseload energy.
- Deuterium (D) Tritium (T) fusion reaction.
- 14 MeV neutrons produced.
- Tritium fuel production through lithium neutron interactions.

Magnetic confinement fusion

 DT plasma contained in vacuum chamber using magnetic fields.

Reproduced with permission, EUROfusion

Pathway to commercial fusion energy

JET

DEMOnstration plant concepts

ITER construction

CCFE neutronics activities

ITER neutronics activities

Fusion is entering a 'nuclear phase', with significant emphasis on nuclear safety, shielding and activation.

ITER analysis is often a shielding and activation study.

Questions we are trying to answer for design engineers:

- Quantities needed: neutron flux, nuclear heating, absorbed dose rate, gas production, radiological inventory, shutdown dose rate.
- 3-D mesh results and component (cell) results.

The sector model – taking a segment of the full 360 degree tokamak

Not always a sector model

Top down view through tokamak building

Typical neutronics workflow

Neutronics model

Global variance reduction (GVR)

Coupled neutron-photon transport with GVR

Secondary responses:

- Nuclide inventory
- · Radioactive waste
- Shutdown dose rates

SpaceClaim

Decay gamma source from MCR2S

- · High resolution neutron/ photon flux maps
- · Gas production
- Heating
- Material dose/dpa rates

OAK RIDGE
National Laboratory

Photon Transport (SDDR)

Neutronics modelling

Considerations for alternative workflows

Key issues:

- Does it get the 'right' answer?
- Ease of use, assigning materials, tallies etc.
- Practical on current machines for appropriate geometry resolutions (run time, memory).
- Ease of geometry production (incl. availability and accessibility of meshing tools if required).

Alternative Monte Carlo-based workflows

MCNP6v1.0, v1.1-b

CSG

UM

DAGMC-MCNP5

US

Serpent-2

CSG

US

-UM

Could not find a suitable workflow to create model.

constructive solid geometry (CSG) unstructured volume mesh (UM) unstructured surface mesh (US)

Applications of Serpent 2 Monte Carlo Code to ITER neutronics analysis

A. Turner¹, A. Burns¹, B. Colling^{1*}, J. Leppänen²

1: UK Atomic Energy Authority (CCFE), Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK

2: VTT Technical Research Centre of Finland, Kivimiehetie 3, FI-02150 Espoo, Finland

*Corresponding author: bethany.colling@ukaea.uk

DAGMC - CAD based workflow

- DAGMC
 (http://svalinn.github.io/DAGMC)
 is an open source toolkit that allows a user to transport particles on CAD based geometries.
- Developed by the Computational Nuclear Energy Research Group (CNERG - http://cnerg.github.io/) at the University of Wisconsin-Madison and UKAEA.
- Its purpose is to enable particle transport on very detailed and complex geometries, by having a core geometry library which can be plugged into any Monte Carlo code.

DAGMC - Integration

Collaboration between UW-Madison and UKAEA on code independent, robust, and efficient methods for CAD based radiation transport

Where could we use Serpent?

Serpent 2 for coupled neutron, photon fusion neutronics calculations

CCFE has performed some assessment of various aspects of Serpent 2 and the suitability for fusion neutronics:

- Comparison with computational results (MCNP) for ITER in-vessel values.
- Application of mesh-based geometry incl. practical considerations and ease of use.
- Computational speed and memory requirements.
- Effectiveness of MPI and threading for large models.

Testing and benchmarking is essential prior to use in ITER analysis.

What benchmarks?

IDM UID VP6DJI

version created on / version / status 07 Feb 2018 / 1.4 / Signed

EXTERNAL REFERENCE / VERSION

Report

Instructions on qualification of radiation transport codes

This document describes the verification and validation (V&V) procedure of the radiation transport code to be applied in ITER radiation analysis.

7 REQUIREMENTS, V&V METHODS AND ACCEPTANCE CRITERIAL.

7.1	7.1 FUNCTIONAL REQUIREMENTS			
7.2	7.2 V&V METHODS			
7.2.1 Functional Testing				
	7.2.1.1	Neutron/Photon flux:		
	7.2.1.2	Reaction rates		
7.2.2 Fundamental testing				
	7.2.2.1	Test of statistical error.		
	7.2.2.2	Test of statistical error with weight window		
	7.2.2.3	Test of random number generator		
	7.2.2.4	Test of source sampling		
	7.2.2.5	Test of conservation of energy for nuclear reaction		
	7.2.2.6	Test of supported neutron photon transport energy range		
7.3	ACCEPTA	NCE CRITERIA OF THE V&V		

- Developing a set of fusion-relevant benchmarks and an automated method for conducting each test.
- Include the ITER requirement tests.
- Computational and experimental comparisons.

ITER reference model 'C-Model'

- 40 degree sector modelled in MCNP with reflecting boundary conditions
- Model comprises: surfaces 108450, cells 70374
- Full 360 model created in Serpent 2 using universe symmetry by reflection with the 40 degree geometry definition.

Serpent2

Comparison results – flux spectra

ITER - C-Model

Statistical uncertainty

	MCNP6	Serpent 2
Histories run	10 ⁹	10 ⁹
Cores	128	256 (32 MPI x 8 OMP)
Wall time (h)	19.7	31.9
Memory (GB) per MPI task	2.9	37.6 (2.5 'opti1')

 $FoM = 1/R^2T$

Resulting statistical error achieved (R)

Compute time (T)

 The figure of merit (FoM) for the blanket cell tallies in Serpent was found to be typically 3 to 5 times lower than MCNP, thus requiring 3-5 times the computing time to achieve the same level of tally statistical accuracy.

Using variance reduction

Weight windows - mesh size

In Serpent need to have uniform mesh size.

Zero importance regions

In Serpent no importances, one 'outside' kill region.

Summary / ongoing / future work

- Initial Serpent (neutron, photon) transport results seem reliable and agree well with MCNP for in-vessel ITER calculations.
- Need to perform more rigorous benchmarking.
- Serpent could offer some advantages over current MCNP workflow.
- Variance reduction (with weight windows).
- Memory usage noted significant reduction if using opti1.
- Computationally slower again perhaps some optimisation and trade off with memory usage.
- Tallying: tally segmentation, multicell tallying, cell flagging/ zero importance.
- Developments in Serpent 2 very encouraging for fusion applications, need to consider future licensing conditions for ITER related tasks/ fusion research.

Bethany.Colling@ukaea.uk

