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Introduction
• Want to use Serpent2.1.29 to do uncertainty quantification and data assimilation
• Means calculate sensitivities with Serpent
• Monte Carlo codes offer advantages for data assimilation
• No approximations in geometry,  angle, energy
• For deterministic codes, need expert judgement to quantify these uncertainties
• Bias between C and E can be accurately quantified:

1. Nuclear data uncertainty
2. Experimental uncertainty
3. Statistical uncertainty from Monte Carlo

• Advantages come with CPU-time disadvantages: sensitivity statistical uncertainties
• How do I efficiently use CPU time? Number of particle histories?
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Sensitivity Profiles
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Sometimes have low 
uncertainty…

Probably too particles



Sensitivity Profiles
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Sometimes a bit 
bigger uncertainty…



Sensitivity Profiles
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Sometimes even 
bigger…

But what’s too big?

How much should I 
reduce the uncertainty?

How long to run 
Serpent?



Outline
• I don’t know how long I need to run Serpent!
• When are the sensitivities acceptable?
• When can I stop a simulation once the sensitivities 

are good enough for the given application?
• It’s too hard to look at the sensitivities individually

• Can have thousands!
• Some are important and some aren’t!

• Can we define a STOP criterion?
• Should be simple, global, and not require setting up 

data assimilation problem
• Makes Serpent more competitive with deterministic 

codes by eliminating CPU waste
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Approach

• Take simple Jezebel Pu-239 benchmark
• keff

• F28/F25
• F49/F25
• F37/F25

• Save the sensitivity coefficients at ever 2 million particles
• Use them in uncertainty quantification and data assimilation
• Propose a convergence criterion
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What/Why? Data Assimilation
• Comparing experiment vs. code have inherent bias from

1. Methods’ uncertainties: Monte Carlo or deterministic methods 
2. Modeling approximations
3. Nuclear data uncertainties

• Uncertainties create a difference, or bias, between code and experiment:

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =
𝐶𝐶
𝐸𝐸

• Data Assimilation is method to treat nuclear data uncertainties and their effects

Prior information + Experimental Benchmarks = Posterior Information

Nuclear Data + Experiments = Posterior Nuclear Data
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• What do you get from applying data assimilation?
1. Reduce the bias and the bias's uncertainty → may be able to reduce 

conservatism 
2. Give feedback to nuclear data evaluators reevaluating important 

nuclide/reaction pairs

• How does data assimilation address nuclear data uncertainties?
1. “Consolidate” calculated and experimental responses.  Assimilate integral 

experiments
2. Adjust nuclear data and/or calculated/experimental responses
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What/Why? Data Assimilation
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Effects on Linear Approximation

• Recall that sensitivities are just slopes from first-order perturbation theory
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𝑪𝑪 𝝈𝝈 = 𝑪𝑪 𝝈𝝈𝟎𝟎 +
𝜕𝜕𝑪𝑪
𝜕𝜕𝝈𝝈

𝝈𝝈 − 𝝈𝝈𝟎𝟎 + ⋯

𝑪𝑪 𝝈𝝈 ≈ 𝑪𝑪 𝝈𝝈𝟎𝟎 + 𝑺𝑺 𝝈𝝈 − 𝝈𝝈𝟎𝟎

• When we use Serpent, we’ll have three sources of uncertainty
1. Mean value: 𝑪𝑪 𝝈𝝈𝟎𝟎
2. Nuclear Data: 𝝈𝝈𝟎𝟎
3. Sensitivity coefficients: 𝑺𝑺



Effects on Linear Approximation

117th International Serpent Group Meeting 
November 5-10, 2017

• Mean value uncertainty comes from the plain Serpent run
• The “Sandwich Rule” is the propagation of moments of first-order 

perturbation theory assuming nuclear data are the random variables

• First-order propagation of moments assuming sensitivities are random 
variables

𝑴𝑴𝑪𝑪 = 𝑺𝑺𝑴𝑴𝝈𝝈𝑺𝑺𝑇𝑇

𝑴𝑴𝑪𝑪 = 𝚫𝚫𝝈𝝈𝑴𝑴𝑺𝑺𝚫𝚫𝝈𝝈



Effects on Linear Approximation
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• To estimate uncertainty from three sources, need
• 𝑺𝑺 from Serpent calculation
• 𝑴𝑴𝝈𝝈 from nuclear data library
• 𝑴𝑴𝑺𝑺 from Serpent (uncertainties associated with S)
• 𝚫𝚫𝝈𝝈which is unknown.

• Effect of 𝑺𝑺 uncertainties is proportional to 𝚫𝚫𝝈𝝈
• For now, assume 100% change in sigma
• Definitely an overestimation of uncertainty, but 

the goal is STOP criterion

𝑴𝑴𝑪𝑪 = 𝑺𝑺𝑴𝑴𝝈𝝈𝑺𝑺𝑇𝑇

𝑴𝑴𝑪𝑪 = 𝚫𝚫𝝈𝝈𝑴𝑴𝑺𝑺𝚫𝚫𝝈𝝈

𝑴𝑴𝑪𝑪 = 𝝈𝝈𝑴𝑴𝑺𝑺𝝈𝝈



Effects on Linear Approximation
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𝝈𝝈𝑴𝑴𝑺𝑺𝝈𝝈
𝑺𝑺𝑴𝑴𝝈𝝈𝑺𝑺𝑇𝑇

𝑪𝑪 𝝈𝝈𝟎𝟎



Effects on Linear Approximation
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𝝈𝝈𝑴𝑴𝑺𝑺𝝈𝝈
𝑺𝑺𝑴𝑴𝝈𝝈𝑺𝑺𝑇𝑇

𝑪𝑪 𝝈𝝈𝟎𝟎



STOP! Criterion
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• Uncertainty from nuclear data is converged once 

𝑺𝑺𝑴𝑴𝝈𝝈𝑺𝑺𝑇𝑇 ≫ 𝚫𝚫𝝈𝝈𝑴𝑴𝑺𝑺𝚫𝚫𝝈𝝈 + 𝑪𝑪(𝝈𝝈𝟎𝟎)

• Assuming 𝚫𝚫𝝈𝝈 = 𝝈𝝈 , results from this test case 
showed convergence when 

𝑺𝑺𝑴𝑴𝝈𝝈𝑺𝑺𝑇𝑇 = 0.2 𝝈𝝈𝑴𝑴𝑺𝑺𝝈𝝈 + 𝑪𝑪 𝝈𝝈𝟎𝟎

• Corresponds to ~200 million particles
• Meets our goals for our criterion

1. Simple to calculate
2. Global parameter
3. Does not need data assimilation



Effects on Data Assimilation
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• Have uncertain sensitivities plugged into DA equations
• How do they affect

• Posterior calculated values?

• Posterior nuclear data?

• Look first at posterior nuclear data
• Does STOP criterion work?

𝑪𝑪′ = 𝑪𝑪𝟎𝟎 + 𝑺𝑺(𝝈𝝈′ − 𝝈𝝈) 𝑴𝑴𝑪𝑪
′ = 𝑺𝑺𝑴𝑴𝝈𝝈

′ 𝑺𝑺𝑇𝑇

𝝈𝝈′ = 𝝈𝝈 + 𝑴𝑴𝝈𝝈𝑺𝑺𝑇𝑇 𝑺𝑺𝑴𝑴𝝈𝝈𝑺𝑺𝑻𝑻 + 𝑴𝑴𝑬𝑬𝑴𝑴
−1 𝑬𝑬 − 𝑪𝑪 𝝈𝝈

𝑴𝑴𝝈𝝈
′ = 𝑴𝑴𝝈𝝈 −𝑴𝑴𝝈𝝈𝑺𝑺𝑇𝑇 𝑺𝑺𝑴𝑴𝝈𝝈𝑺𝑺𝑻𝑻 + 𝑴𝑴𝑬𝑬𝑴𝑴

−1 𝑺𝑺𝑴𝑴𝝈𝝈



Posterior Nuclear Data
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Capture Fission Spectrum



Posterior Nuclear Data
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Fission Inelastic



Posterior C

197th International Serpent Group Meeting 
November 5-10, 2017

𝑪𝑪′ = 𝑪𝑪𝟎𝟎 + 𝑺𝑺(𝝈𝝈′ − 𝝈𝝈) STOP!

STOP!



Posterior C Uncertainty
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𝑴𝑴𝑪𝑪
′ = 𝑺𝑺𝑴𝑴𝝈𝝈

′ 𝑺𝑺𝑇𝑇

STOP!STOP!



DA Conclusions
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• We see fluctuations in posterior distributions 
for C and for nuclear data

• But posteriors are remarkably inflexible to 
sensitivity uncertainty

• Fluctuations are diluted by other terms in the 
equations

• Our STOP! criterion was very effective 
• At 200 million particles

• Convergence of posterior nuclear data
• Convergence of posterior C
• Well past convergence of posterior C 

uncertainty 

𝝈𝝈′ = 𝝈𝝈 + 𝑴𝑴𝝈𝝈𝑺𝑺𝑇𝑇 𝑺𝑺𝑴𝑴𝝈𝝈𝑺𝑺𝑻𝑻 + 𝑴𝑴𝑬𝑬𝑴𝑴
−1 𝑬𝑬 − 𝑪𝑪 𝝈𝝈

𝑴𝑴𝝈𝝈
′ = 𝑴𝑴𝝈𝝈 −𝑴𝑴𝝈𝝈𝑺𝑺𝑇𝑇 𝑺𝑺𝑴𝑴𝝈𝝈𝑺𝑺𝑻𝑻 + 𝑴𝑴𝑬𝑬𝑴𝑴

−1 𝑺𝑺𝑴𝑴𝝈𝝈



Conclusions
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• Characterization of the effects of sensitivity uncertainties
• First step towards proposing a STOP! Criterion

𝑺𝑺𝑴𝑴𝝈𝝈𝑺𝑺𝑇𝑇 = 0.2 𝝈𝝈𝑴𝑴𝑺𝑺𝝈𝝈 + 𝑪𝑪 𝝈𝝈𝟎𝟎

• Data assimilation posteriors not heavily influenced by sensitivity uncertainties 
(2nd order effect)

• Realistic estimation uncertainty in first-order perturbation theory from 
uncertain sensitivities

• Can now plan large-scale simulations with Serpent for data assimilation and 
efficiently use CPU time



Conclusions
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• Request as user
• Formulation assumes that nuclear data and sensitivities are uncorrelated.
• Best formulation would include correlations

𝑴𝑴𝑪𝑪 = 𝑺𝑺
𝚫𝚫𝝈𝝈

𝑴𝑴𝝈𝝈 𝑴𝑴𝝈𝝈𝑺𝑺
𝑴𝑴𝑺𝑺𝝈𝝈 𝑴𝑴𝑺𝑺

𝑺𝑺
𝚫𝚫𝝈𝝈

𝑇𝑇

• Can we compute the correlations between 𝑺𝑺 and 𝚫𝚫𝝈𝝈, or at least between 𝑺𝑺
• Would give most theoretically consistent results 
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