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Goal:

Improve simulation of complex nuclear
reactors, in particular the Transient Reactor Test
Facility (TREAT) and the Advanced Test Reactor
(ATR), both at Idaho National Laboratory (INL).

* Coupled Serpent—MOOSE/BISON/

MAMMOTH
* Functional Expansion Tallies -
* Weighted Delta Tracking b
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Coupled Serpent—MOOQOSE

Built off of prototype provided by Ville Valtavirta

« HeatToMoose: transfers the Serpent fission heat generated,
per element volume, to the MOOSE mesh. Simulation must
start with initial “guess,” which can be accomplished by
running standalone Serpent.

 ElementTransfer: averages the MOOSE temperature solution
field for each element, transforms this to an OpenFOAM
mesh, and transfers this to the Serpent interface input file.

* RunSerpent: runs the Serpent calculation and updates the 3
fission heat distributions.
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Coupled Serpent—MOOQOSE ||

Serpent MOOSE
Process

Serpent
fission
power to
MOOQSE

MOQOSE
thermal
diffusion

Serpent
criticality
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Coupled Serpent—MOOQOSE Il

Meshes
Serpent MOQOSE

7: ° P 5 4 : Rectangular

! ; > i 3 3 0 %0 Prism
: : 11

3 """"" 72 4 41 7

0 1 0 : i
OpenFOAM hexahedron vertices, faces, 4 s

and edge numbering

Four separate files:

-~

— points y
— faces GeneratedMesh with dim=3 andIdohoNotionoILoborotory
— owners elem_type=PRISM6, with sides nhumbered

neighbors
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Coupled Serpent—MOOQOSE |V
Code Modification

* Protect header files from multiple
definitions;

* Extern global variables declared in
header files;

* Create Cfile to define those global e Makefile
variables;

Compiling Options

 Change main to cmain; * In SFC/ dlrectory

e #Hdefine OPEN MP and NO GFX

MODE;

* Create DATA EXT MODE option; —-i

e Add extern clause to all *.c and kol
*.h files;

Fix Newton’s method bug in TMS.

Idaho State
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Coupled Serpent—MOOSE V

Single Fuel Pin

Fuel Water
Isotope % mass Isotope  %mass
235y 2.9971 'H 66.6667
238y 85.153 160 33.3333
160 11.85

5 cm? square 10 cm? square
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Coupled Serpent—MOOSE VI

Single Fuel Pin Results

Standalone Serpent 2.1.26 Coupled Serpent—-MOOSE

keryr (analog) 0.20592 +/- 0.00080 0.20535 +/- 0.00085
ke ¢ (implicit) 0.20598 +/- 0.00060 0.20542 +/- 0.00061
Transport comp. time 20.9 20.3
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Functional Expansion Tallies

What are Functional Expansion Tallies (FETs)?

e Typically, Monte Carlo codes score tallies in
spatial bins arranged in some type of regular
mesh.

 Rather than score tallies in a finite number of
bins, FETs score the contribution of each

tally to a handful coefficients which G

correspond to continuous basis functions.  emsmiom
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Functional Expansion Tallies I

Why implement FETs in Serpent?

e Structured to unstructured mesh conversion
* Only have to store a handful of coefficients
e Data transfer speed up

* Implemented successfully in OpenMC

* Continuous!

-~
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Functional Expansion Tallies Il

Legendre Polynomials

The Legendre polynomials P; are defined for integers i > 0 as

p.(2) — 2i;1§’:(li>(—ik—1> (1;z>" 1)

k=0

where the first two factors in parenthesis are binomial coefficients
and the last factor is a real number.
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Functional Expansion Tallies IV

Zernike Polynomials

The Zernike polynomials Z; = Z]" are implemented for even n — m

and n > m as

(\/2(n+ 1)R™(r) cos(mb)

form>0

Z7(r,0) =< +/2(n+ 1)R,;™(r)sin(—mb) for m < 0

\Vn+1R(r)

n—

Rr) =304 (") (e

k=0 2

where the second and third factors in parenthesis are binomial

coefficients.
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) rn—2k
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for m=20 (2)
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Functional Expansion Tallies V

Calculating the coefficients

From the orthogonality of Zernike and Legendre polynomials, the
product Zj(r,0)P;j(z) satisfies

/_11 dz /01 dr /027r do (Zj(r7 H)P,'(z)) (Zj/(r, H)P;/(z)) = 0; 10; jr

(3)
where 0 is the Kronecker delta function. Note that the forms of
the polynomials defined in Egs. [2] and [1] are normalized so that
their inner products are one. The constants ¢;; can then be
obtained from 1

Idaho National Laboratory

1 1 27
Cij = /_1 dz/0 dr/0 do f(r,@,z)Zj(r, 0)P;i(z) (4)
Idaho State
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Functional Expansion Tallies VI

First 15 Zernike Polynomials

-~
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"The first 15 Zernike polynomials, ordered vertically by radial degree and horizontally by azimuthal degree” by
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Functional Expansion Tallies VII

Multiphysics Interface
* New to Serpent 2

e Standardized input and output file formats for reading in
temperature/data and writing fission power

e Support for regular mesh, tetrahedral mesh,
unstructured mesh, and more

 Type 3 interface 'User Defined Functional Dependence’,
allows a user to pass in an arbitrary number of
parameters and modify userifc.c, the source file that §
interprets the parameters (choNalnd oty
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Functional Expansion Tallies VIII

Reading temperature and density data

function UserIFC(*f, x, y, z, nz, nr, co1, ..., Cjj - -, Cnz1, nr)
=0
i=0
for i < nz do
j=1
for j < nrdo
¥ =* 4+ ¢; x Zi(r(x,y),0(x,y)) x Pi(z)
end for
end for
end function
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Outline of UserlFC() function using nz Legendre polynomials and nr
Zernike polynomials. Note that *f is a pointer to either temperature or

density at location (x,y,z).
Idaho State
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Functional Expansion Tallies IX

Writing fission power data

function ScoreINTERFACEPOWER(E, w, nz, nr, X, y, 2)
i=0
for i < nz do
j=1
for j < nr do
E=E x Z(r(x,y),0(x,y)) x Pi(z)
AddScoreToBin(E, w, i, j)
end for
end for

end function
.

Idaho National Laboratory

Modified ScorelnterfacePower() function using nz Legendre
polynomials and nr Zernike polynomials. The coefficients are stored in
nz x nr bins.
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Functional Expansion Tallies X

Serpent Detector Cards

The fuel pin was partitioned into 10 equal-width
axial zones and 20 radial zones. The functional
expansion tally was carried out to 5% order
Legendre and 4t order Zernike polynomials.

-~

Idaho National Laboratory

Idaho State

Pocatello | Idaho Falls | Meridian | Twin Falls UNIVERSITY



Functional Expansion Tallies Xl

Axial Fission Power Distribution Comparison
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Functional Expansion Tallies XI|

Radial Fission Power Distribution Comparison
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Weighted Delta Tracking
Woodcock Delta Tracking

Choose g(x) using the majorant cross-section, the maximum
cross-section for our region of interest V.

Fimaj = max{Te(r)}

Sample from

s(§)=F7(&) = -

And accept with probability

T Mg(x)  Tpaje Tme 3

- Idaho National Laboratory
2 maj
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Weighted Delta Tracking I
Woodcock Delta Tracking

Process

EE—

Sample path
length

ample if thex_ Real
ollision is rea

Score all
particle weight

Conduct
collision
routine
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Weighted Delta Tracking Il

Woodcock Delta Tracking Advantages/Disadvantages

Benefits: Downsides:
» Can sample across multiple » Lots of virtual collisions
geometric regions. when X < X paj
» No calculation of boundary » Heavy absorbers
distance required. » Can't use track length

estimator for flux

Serpent 2 uses a combination of ray tracing and delta-tracking [2]

P
real o e

0 | 1 | 1 | | 1 1 1 4

Ray
Delta-tracking
Idaho National Laboratory

tracing
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Weighted Delta Tracking IV

Implicit Events

Statistical processes can be replaced by using the expected value of
the outcome:[1]

E[x] = x1p1 + x2p2 . . . + XnPn
Implicit capture:

E [Wf ] = Wr ,scatteringP scattering T Wf ,absorptionP absorption

= w;P, scattering

Scapture =E [Wi — Wr ]

= E[w] — E[w] %

Idaho National Laboratory

= w; — w; P, scattering

= Wi(]- — Pscattering)

Idaho State
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Weighted Delta Tracking V
Weighted Delta Tracking

Weighted delta-tracking replaces the rejection sampling of
delta-tracking with a weight reduction [3].

E [Wf ] — Wr ,realP real T WF virt Pyirt
For an absorption event:

E [Wf ] — Wf ,realP real T Wf ,virt P virt
= 0+ w;Pyirt

9

2 %
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Weighted Delta Tracking VI
WDT Scattering

Application of the expectation value to scattering:

E[Wf] — Wf,realPreal + WF virt Pvirt
= W P real T Wi P virt
= Wi(Preal +1-— Preal)

This doesn’'t make any physical sense. In reality there are two

portions of the weight: one that undergoes a real event and one

that undergoes a virtual collision. Particle must be split at every

scattering event. sl

Idaho National Laboratory

Instead, reintroduce rejection sampling into the scattering routine
to model virtual collisions explicitly.
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Weighted Delta Tracking VII
WDT Process

Sample path
length

Scattering Capture or fission

Sample
collision type

Score real
percentage of
Real weight

Virtual ~ Sample if the

collision is real

Score all .
particle weight Reduce weight .l
Idaho National Laboratory
Conduct

scattering
routine
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Weighted Delta Tracking VI
WDT Scattering Summary

» Requires a rouletting routine.
» Moves collision scoring to after collision type sampling.

» Scattering collisions that are determined to be virtual cost
more than normal delta-tracking virtual collisions.

» Weight reduction when > — > ,,,; generates many low
weight particles.

P [ — E! ??
real —
z"maj ¢
01
0 | | | ] ] | | 1
Ray ) .
tracing Weighted delta-tracking Delta-tracking Idoho Nofional Laboratory
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Weighted Delta Tracking IX

Homogenous TREAT fuel cell

v v vy

Eleven energy groups.
100 000 source neutrons, 5 inactive and 100 active cycles

Interested in cross-section FOM.
Run with and without WDT, compare FOM.

» Looked at ¥, X, ¥, and gcatter (Po, P1, and Ps).
Figure of merit:
1
FOM =
o(X)?T
FOM ratio: S
Ratio FOMwpr
p— [doho National Laborator
FOMHOWDT Y

Idaho State
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Weighted Delta Tracking X
Homogenous TREAT fuel cell FOM

Average FOM Ratio for cross-sections by energy group
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Weighted Delta Tracking XI
BWR

Gd pins
1.295 cm pitch
25% void fraction

20 000 neutrons, 10
inactive, 500 active cycles

v v vy

Idaho National Laboratory
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Weighted Delta Tracking XlI
BWR FOM

Total cross-section FOM vs. WDT Threshold
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Future Work

Serpent—BISON coupling

Analyze Serpent—MOQOSE coupled fission, thermal
FETs implemented, optimized in coupled Serpent
Serpent FETs = BISON

BISON functional expansions = Serpent
Serpent—BISON coupling optimization

V&YV

Weighted Delta Tracking (WDT) -

Idaho National Laboratory

Replace some surface tracking with WDT
Test on TREAT

Idaho State
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