
Homogeneous diffusion flux solver in Serpent 2

Maria Pusa

September 17th, 2014

1



Outline

• Nodal calculations

• Lattice calculations

– Homogenization

– Discontinuity and peaking factors

– Boundary conditions

• Multi-group diffusion equation in homogenized node

– Numerical solution
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Nodal Calculations

• Computationally expensive to solve transport equation in the true
heterogeneous geometry of the reactor core, i.e. to compute global
heterogeneous flux

⇒ Nodal calculations

– System divided into nodes that have homogeneous properties

– Solution based on multi-group diffusion theory
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• Solution called global homogeneous flux

• Lattice calculations ⇒ homogenized constants for each node
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Lattice calculations

• Key idea:

– Assume global heterogeneous ϕglobhet flux to be known

– Preserve nodal reaction rates:
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• Practise: Solve transport equation for a set of smaller sub-problems
⇒ local heterogeneous flux.

• Approximate global heterogeneous flux ϕglobhet by local heterogeneous
flux ϕ0het when computing the homogenized constants
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Continuity conditions for nodal model

• Nodes are coupled together using discontinuity factors obtained from
lattice calculations.

• Idea:

– Global heterogeneous flux is known to be continuous across node
boundaries

– There is no no physical requirement for the global homogeneous
flux to be continuous

– Discontinuity factors (DFs) couple local homogeneous flux to local
heterogeneous flux

• Approximation: DFs are used to couple global homogeneous flux to
global heterogeneous flux

⇒ Continuity conditions for the nodal model
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Discontinuity Factors

• Definition:

F g
i→j =

∫
Si−j

dSϕghet(r, E)∫
Si−j

dS ϕgi (r, E)
φi φj

Node i Node j

Si−j

• Idea: On the boundary, ϕgi multiplied by the discontinuity factor F g
i→j

equals ϕghet on average.

• Corner DFs can be defined similarly as DFs for the sides
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Pin-Power Reconstruction

• Due to homogenization, nodal solution does not provide detailed
pin-by-pin flux

• It is still necessary to have an estimate for the power distribution inside
the nodes

⇒ Peaking factors (PFs) couple local homogeneous flux with
pin-powers

• Peaking factor for pin i can be defined as:
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∫
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dV

∫
g
dE ϕhet(r, E)κΣf(r, E)∫
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dV ϕg(r)

• Power in pin i in node k can be computed as
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i

Pk
Ptot
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Data for nodal calculations

• Exact computation of homogenized constants requires global
heterogeneous flux solution for the entire system.

• Exact computation of DFs and peaking factors requires global
homogeneous flux in addition to the global heterogeneous flux.

• In practise, homogenized constants, DFs and peaking factors are
computed based on local heterogeneous and local homogeneous
fluxes (corresponding to a set of sub-problems).
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Reflective boundary conditions

• Typical practice: consider each node separately with reflective
boundary conditions ("sub-problem = node")

⇒ Homogenized constants for each assembly can be computed
separately.

⇒ Net currents over assembly boundaries are zero.

⇒ Diffusion equation has constant solution ϕ = ϕ
0

het inside the
homogenized assembly.

⇒ DFs and peaking factors can be computed based on ϕ0het alone.

⇒ No need for a diffusion solver
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Colorset calculations
• In some cases, reflective bound-

ary conditions cannot be used or
the approximation is poor:

– Reflectors

– Strong absorbers

– Assembly positioning

⇒ Node must be modeled with some surroundings ("sub-problem =

colorset").

⇒ Computation of DFs and PFs requires solving the local homogeneous
flux inside the node.

⇒ Separate deterministic calculation is required to solve the multi-group
diffusion equation inside the homogenized node

– This capability has been implemented in Serpent 2
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Solutions of Homogeneous Diffusion Equation (1)

• Diffusion equation (DE) in the homogenized node

D
(
ϕxx + ϕyy

)
=

(
Σt −Σs −

1

keff
F

)
ϕ = Aϕ

⇔ ϕxx + ϕyy = Mϕ , M =D−1A .

• Trial function
ψ(x, y) = eB1x+B2yc = eB1xeB2y

• Substitute to DE

ψxx +ψyy = B2
1ψ +B2

2ψ =
(
B2

1 +B
2
2

)
ψ

• Function ψ satisfies DE if

B2
1 +B

2
2 =M =D−1A
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Solutions of Homogeneous Diffusion Equation (2)

• Functions of the form

ψ(x, y) = eB1x+B2y , B2
1 +B

2
2 =M ,

satisfy DE. These functions are called basis functions.

• Matrix square root: If C2 = A , C is a matrix square root of A

• Examples of basis functions: e
√
Mx, e−

√
My and e

√
M
2 (x+y)

• General solution of DE is a linear combination of all basis functions.
Boundary conditions determine the coefficients of the basis functions.

• When constructing a solution to DE, the number of boundary
conditions must equal the number of basis functions.

• Local homogeneous solution should be consistent with the nodal code.

12



Constant Current on Every Boundary

• Boundary condition: −D ∂
∂n

Φ(x, y) = JS
net/S = const., when (x, y) ∈ S.

– For example, ϕx(x, y) = −D−1JW
net/a when x = −a/2

JN
net

JS
net
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net JE

net

( a2 ,−
a
2 )(− a

2 ,−
a
2 )

(− a
2 ,

a
2 )

( a2 ,
a
2 )

• Solution must be of the form:

ϕ(x, y) = e
√
Axc1 + e−

√
Axc2 + e

√
Ayc3 + e−

√
Ayc4

• Unknown coefficient vectors c1, . . . , c4 are solved from 4 boundary conditions

• In this case, the solution is unique.
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Constant Current on Every Boundary

• Forcing the homogeneous current to a constant value on each boundary can
lead to overestimation or underestimation of homogeneous flux near the
corners

• Some nodal codes use corner ADFs in addition to surface ADFs
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Method implemented in Serpent
• Boundary conditions:

–
∫
S
Jhom(r) dS = Jnet,S for each boundary surface

–
∫
Γ
Jhom(r) dS = Jnet,Γ for each corner

• Rectangular geometry:

– 8 boundary conditions and 8 basis functions

– Basis functions:

f±
x = e±

√
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y = e±
√
Ay ,f±

x+y = e±
√

A
2

(x+y) ,f±
x−y = e±

√
A
2

(x−y)

SESW

SS

SN

ΓSEΓSW

ΓNEΓNW

• Similar approach for hexagonal geometry
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Example 1

• The Benchmark for Evaluation and Validation of Reactor Simulations
(BEAVRS), red assembly (in the middle)
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Example 1

2.5 assembly widths of surroundings.
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Example 1

Top: surroundings included. Bottom: reflective boundary.
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Example 2
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Numerical solution of homogeneous flux in Serpent

• Starting point: Homogenized constants and boundary conditions

• Form matrix M :

M = D−1

(
Σt −Σs −

1

keff
F

)
• Compute complex Schur form M = UTU∗

– Hessenberg reduction and QR decomposition based on Householder
transformations

– QR updates with Wilkinson shift

⇒ Matrix functions (matrix square root, matrix exponential) can be computed
efficiently with Parlett method

– Form boundary conditions

– Solve coefficients (Gaussian elimination with partial pivoting)

– Compute DFs and PFs based on local homogeneous solution
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Summary

• In the absence of reflective boundary conditions, the computation of
discontinuity and peaking factors requires solving diffusion equation for the
homogenized node.

– General solution is a linear combination of matrix functions (called basis
functions)

– Coefficients of basis functions computed based on boundary conditions

– Boundary conditions should be consistent with nodal code

• Method implemented in Serpent 2:

– 2D

– Rectangular and hexagonal geometry

– Boundary and corner net currents as boundary condition

• Future work:

– Need for other types of boundary conditions?

– Extend methodology to 3D.
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