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Burnup equations

e Form a system of ordinary differential equations:
n'=An, n(0)=ng, (1)

e Matrix exponential solution

n = e?tin, (2)

e There are various numerical algorithms but many of them are
computationally expensive and of dubious numerical quality [1]

[1]C. MOLER and C. VAN LOAN, Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later, SIAM Rev., 45 (2003).
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Burnup matrix

e Contains both positive (off-diagonal) and negative (diagonal) elements

e Extreme cases encountered:
— Size ~ 1700 x 1700

— Norm
| Al ~10%
— Eigenvalues
(M| € [0,10%1]
— Timestep
t~10'...10" s

= Matrix exponential usually not computed for a full system!

— In ORIGEN short-lived nuclides are removed from the burnup matrix
before computing the matrix exponential solution
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Rational approximation of matrix exponential

e Eigenvalue decomposition (General case: Jordan form)
- A=TAT !

= eA'=TeMT™' and r(At) =Tr(At) T}

o Approximate e! by r(At), where r(z) approximates e at the
eigenvalues of A

e Example: Matlab’s matrix exponential function expm based on Padé
approximation

— Approximation accurate near the origin

=- Not applicable to burnup matrices when short-lived nuclides are
included
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Burnup matrix eigenvalues
e Burnup matrix eigenvalues are bounded near the negative real axis [2]

e Burnup matrices are connected with the class of singular
M-matrices [3]

e Wedge condition for the spectrum around the negative real axis [3]

_ ], — et Tr
A(A)CWn—{z—'re ’7‘>O,|9\22—|—n} (3)

= To compute the matrix exponential, rational approximation accurate
near the negative real axis should be chosen.

[2] M. PUSA and J. LEPPANEN, Computing the Matrix Exponential in Burnup Calculations, Nucl. Sci. Eng., 164, 2, 140—150 (2010)

[3] M. PUSA Numerical Methods for Nuclear Fuel Burnup Calculations D.Sc. Thesis, Aalto University (2013). (VTT Science 32)
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Chebyshev Rational Approximation Method (CRAM)

e CRAM approximation of order & is defined as the unique rational
function 7, such that

€k = sup |frr(x)—e*|= inf { sup |rk,k(x)—ex|} . (4)

e It can be characterized as the best rational approximation on the
negative real axis
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Accuracy of the CRAM approximation of order 16 in the
complex plane

logy [€* — 716,16(2)]

Imaginary axis

_—1500 ~150 ~100 ~50 0

Real axis
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omputation of CRAM approximations

e Determining best rational approximations is difficult
— Requires tailored algorithms and high-precision arithmetics.

— Polynomial coefficients for approximation orders 1, ..., 30 computed
previously and published with 20 digits of accuracy:

A. J. CARPENTER, A. RUTTAN, and R. S. VARGA, Extended Numerical Computations on the
‘1/9’ Conjecture in Rational Approximation Theory, Rational Approximation and Interpolation in
Lecture Notes in Mathematics, Vol. 1105, 383—411, P. R. Graves-Morris, E. B. Saff, and

R. S. Varga, Eds., Springer-Verlag (1984).

e To compute 7 1 (At), where 7 1(2) = pr(2)/qr(2), the zeros of §x(z) need to
be known with a high accuracy

e Coefficients by Carpenter et al. enable computation of the poles for
approximations up to order 16.

= Highest-order of CRAM considered previously for computing the matrix
exponential
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e Error functions corresponding to best approximations equi-oscillate
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e Remez algorithm

1. Assume {t;}2FT? c [~1, 1] and find real polynomials p) and g and a parameter ¢ > 0 such

that
SOt p(o(ts))

—DNe=0, i=1,...,2k : 5
q(¢(ti))+( De=0, i=1 2k 4 2 (5)

where qr+1 = 1.
2. Assume ry ;. € T, and € > 0 and find the 2k 4 2 local extreme points of the function

E(t) = e —rp n(6(1)) (6)

in the interval [—1, 1].
10
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Implementation of Remez algorithm

e Remez algorithm was implemented using Matlab’s Symbolic Toolbox
with high-precision arithmetics (vpa)
e CRAM coefficients were computed for approximation orders 2,4, ..., 50.

— Computation of approximation of order 50 (1000 digits, tolerance
107299 took 1 hour 10 minutes CPU time in Matlab.

— In 1984, one Newton update took 15 hours CPU time (230 digits,
tolerance 1072%9) for approximation order 30!

11
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Implementation of Remez algorithm
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e CRAM of order 16 can provide very accurate and efficient solution to burnup
equations without the need to exclude any nuclides [2, 4]

e Accuracy of CRAM or order k is compromised if a nuclide concentration
diminishes significantly during the time step [5].

— Cut-off ~ 10~ %n,;(0)

e Approximation order of CRAM should be selected according to [6]

v me (logm {max{ewmm), 10—8}} " d) | )

where
— Nuclide concentrations smaller than 10~ ° can be treated as zero

— Result is wanted with d digits of accuracy

[2] M. PUSA and J. LEPPANEN, Computing the Matrix Exponential in Burnup Calculations, Nucl. Sci. Eng., 164, 2, 140—-150 (2010)
[4] A. ISOTALO and P. A. AARNIO, Comparison of depletion algorithms, Ann. Nucl. Energy, 38, 2-3, 261-268 (2011).
[6] M. PUSA Accuracy Considerations for Chebyshev Rational Approximation Method (CRAM) in Burnup Calculations In proc. M&C 2013, Sun Valley,

ID, May 5-9, 2013.

[6] M. PUSA Higher-Order Chebyshev Rational Approximation Method (d@i\M) In Proc. PHYSOR 2014, Kyoto, Japan, Sept 28 — Oct. 3 (2014).
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Example: burnup system with 1606 nuclides

e PWR pin-cell lattice irradiated to 0.1 MWd/kgU, ¢t = 12.5 days
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e In the absence of neutron irradiation, some of the nuclide concentrations tend
fast to zero

Nuclide density (1/cm?)

e Define cut-off 107'°1/cm? (single nuclide in a cubic km)

= Accuracy considerations:
— Fort < 10* s, low approximation orders can be used

— To reach 5 digits of accuracy, approximation order k£ = 36 is required for
t =10° s and k = 40 for t = 10'® s= 32 million years
— For k = 44, time-step can be extended to infinity without compromising the

accuracy of the solution!
15
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Nuclide density (1/cm?®)

1 million
years

Relative error of CRAM
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e The computation of matrix exponential has been considered
challenging in the context of burnup equations

e Burnup matrix eigenvalues were discovered to lie around the negative
real axis and CRAM can be characterized as the best rational
approximation there

e Computation of CRAM approximations is difficult
=- Approximations up to order 16 considered previously

e Coefficients computed recently for approximation orders 2,4, ...,50
based on Remez algorithm.

e CRAM of order 16 can provide very accurate solution to burnup
equations without excluding any nuclides

e Higher-orders of CRAM enable accurate simulation of decay systems

for time steps of the order of millions of years.
17
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Further reading

e M. PUSA and J. LEPPANEN, Computing the Matrix Exponential in Burnup Calculations,
Nucl. Sci. Eng., 164, 2, 140-150 (2010)

e M. PUSA, Rational approximations to the matrix exponential in burnup calculations,
Nucl. Sci. Eng., 169, 2, 155-167 (2011)

e M. PUsA, Correction to partial fraction decomposition coefficients for Chebyshev rational
approximation on the negative real axis, arXxiv:1206.2880v1 [math.NA] (2012).

e M. PUSA Accuracy Considerations for Chebyshev Rational Approximation Method
(CRAM) in Burnup Calculations In proc. M&C 2013, Sun Valley, ID, May 5-9, 2013.

e M. PusaA and J. LEPPANEN, Solving linear systems with sparse Gaussian elimination in
the Chebyshev rational approximation method (CRAM), Nucl. Sci. Eng., 175 (2013)
250-258.

e M. PusA, Numerical methods for nuclear fuel burnup calculations, D.Sc. Thesis, Aalto
University, VTT Science 32 (2013).
http://montecarlo.vtt.fi/download/S32.pdf (2013).

e M. PUSA Higher-Order Chebyshev Rational Approximation Method (CRAM) In Proc.
PHYSOR 2014, Kyoto, Japan, Sept 28 — Oct. 3 (2014).
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