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Outline
e Nodal calculations

e Lattice calculations
— Homogenization
— Discontinuity and peaking factors

— Boundary conditions

e Multi-group diffusion equation in homogenized node

— Numerical solution
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Nodal Calculations

e Computationally expensive to solve transport equation in the true

heterogeneous geometry of the reactor core, i.e. to compute global
heterogeneous flux

= Nodal calculations

— System divided into nodes that have homogeneous properties

— Solution based on multi-group diffusion theory
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e Solution called global homogeneous flux

e Lattice calculations = homogenized constants for each node
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o Key idea:
— Assume global heterogeneous ¢£" flux to be known

— Preserve nodal reaction rates:
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e Practise: Solve transport equation for a set of smaller sub-problems
= local heterogeneous flux.

e Approximate global heterogeneous flux ¢" by local heterogeneous

flux .. when computing the homogenized constants
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Continuity conditions for nodal model

e Nodes are coupled together using discontinuity factors obtained from
lattice calculations.
e |dea:

— Global heterogeneous flux is known to be continuous across node
boundaries

— There is no no physical requirement for the global homogeneous
flux to be continuous

— Discontinuity factors (DFs) couple local homogeneous flux to local
heterogeneous flux
e Approximation: DFs are used to couple global homogeneous flux to
global heterogeneous flux

= Continuity conditions for the nodal model
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Discontinuity Factors

Si_j
e Definition: v
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e Idea: On the boundary, ¢ multiplied by the discontinuity factor £, ;
equals ¢7_, on average.

e Corner DFs can be defined similarly as DFs for the sides
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e Due to homogenization, nodal solution does not provide detailed
pin-by-pin flux
e |t is still necessary to have an estimate for the power distribution inside

the nodes
= Peaking factors (PFs) couple local homogeneous flux with
pin-powers

e Peaking factor for pin i can be defined as:

g fV}- dV fg dE thet(’l",E) /fzf(’r,E)
" Jy, dV ¢9(r)

e Power in pin i in node k£ can be computed as
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Data for nodal calculations

e Exact computation of homogenized constants requires global
heterogeneous flux solution for the entire system.

e Exact computation of DFs and peaking factors requires global
homogeneous flux in addition to the global heterogeneous flux.

¢ In practise, homogenized constants, DFs and peaking factors are
computed based on /ocal heterogeneous and local homogeneous
fluxes (corresponding to a set of sub-problems).
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Reflective boundary conditions
e Typical practice: consider each node separately with reflective
boundary conditions ("sub-problem = node")

= Homogenized constants for each assembly can be computed
separately.

=- Net currents over assembly boundaries are zero.

=- Diffusion equation has constant solution ¢ = Eﬁet inside the
homogenized assembly.

= DFs and peaking factors can be computed based on ¢} . alone.

= No need for a diffusion solver
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Colorset calculations

e In some cases, reflective bound-
ary conditions cannot be used or —
the approximation is poor: '

— Reflectors

— Strong absorbers o

— Assembly positioning
= Node must be modeled with some surroundings ("sub-problem =
colorset").

= Computation of DFs and PFs requires solving the local homogeneous
flux inside the node.

= Separate deterministic calculation is required to solve the multi-group
diffusion equation inside the homogenized node

— This capability has been implemented in Serpent 2
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Solutions of Homogeneous Diffusion Equation (1)

e Diffusion equation (DE) in the homogenized node

D (¢:1::1: + ¢yy) — (E’G - is — klﬁcf) ¢ — A¢
& ¢ to,, = Moy, M=D'A.

e Trial function
'l,b(aj, y) — eBlw-l—Bg’yc — eBlaceBgy

e Substitute to DE
Yoo + Py, = Bl + B3y = (Bi + B3) ¢
e Function ¢ satisfies DE if
Bi+B;=M=D"A
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Solutions of Homogeneous Diffusion Equation (2)
e Functions of the form
p(z,y) =P 7BV B+ B =M,
satisfy DE. These functions are called basis functions.

e Matrix square root: If C> = A, C is a matrix square root of A

e Examples of basis functions: eVMz, ¢=VMy gnd ¢V 5 (@+)

e General solution of DE is a linear combination of all basis functions.
Boundary conditions determine the coefficients of the basis functions.

e When constructing a solution to DE, the number of boundary
conditions must equal the number of basis functions.

e Local homogeneous solution should be consistent with the nodal code.
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Constant Current on Every Boundary

e Boundary condition: —D 2 ®(z,y) = J5../S = const., when (z,y) € S.

— For example, ¢_(z,y) = —D *Jv;/awhen z = —a/2
JN a a
(-g,9)  Tmet (5.9)
W E
‘]net Jnet
(_27_2) g (97_9)
2 2 Jnet 2 2
e Solution must be of the form:
Qb(.fl?,y) — e\/Zaccl _|_ 6—\/Z:UC2 _|_ e\/Zyc3 + e—myc4
e Unknown coefficient vectors ci, ..., cq are solved from 4 boundary conditions

¢ In this case, the solution is unique.

13



VTT TECHNICAL RESEARCH CENTRE OF FINLAND

Constant Current on Every Boundary

e Forcing the homogeneous current to a constant value on each boundary can
lead to overestimation or underestimation of homogeneous flux near the

corners

e Some nodal codes use corner ADFs in addition to surface ADFs

Thermal heterogeneous flux Thermal homogeneous flux
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e Boundary conditions:
— [¢ Jhom(r) dS = Jxet,s for each boundary surface
— Ji Jhom (1) dS = Jnet,r for each corner

e Rectangular geometry:
— 8 boundary conditions and 8 basis functions
— Basis functions:
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e Similar approach for hexagonal geometry
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Example 1

e The Benchmark for Evaluation and Validation of Reactor Simulations
(BEAVRS), red assembly (in the middle)

I | IIT | IIT | III | IIT | IIT | IIT | IIT | III
IIT | IIT | IIT | I I I I Il I IT | III | IIT | IIT

1 IIT | IIT IIT | IIT

2 IO | IIT | II I | IIT | IIT

3 111 11T

4 | III | III . . IIT | III
5 | IO | II I | III
6 | III | I I | III
7T IO I I | III
8 | III | T I | III
9 | II | I I | III
10 | IIT | I I | III
11 | IOI | I II | III
12 | III | III | II . . I | III | III
13 oI | II II | III

14 IOI | I | 1II II | III | III

15 IIT | IIT IIT | IIT

II1

II1 ‘ juss ‘ 11T ‘ II1 ‘ II1 ‘ IIT ‘ II1 ‘ II1 ‘ 11T
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2.5 assembly widths of surroundings.

Fast heterogeneous flux Fast homogeneous flux
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Top: surroundings included. Bottom: reflective boundary.

Fast heterogeneous flux Thermal heterogeneous flux

34 WAy N

. \\“\»‘ , "“"‘%’\"I‘ vVlA ‘ ( "' ‘:‘ \’. \ ‘

Ny "\\V‘ ‘$ " CIA (’I ‘u,( v" '\’“ / " " \ o

3 “ " ‘ k":\ ?\ {"/ “.W ,w“‘;\» "“'\ u“\» W 3"" ‘A\' \\\, (m ‘I l"/ ’ \‘ ‘

»9, { )M W“: Lo i «\ it ) \\W e
”" )

"N \j"’. "\

2.6
10

WA
A .\A\A\w\‘m ‘/& A i “\
\‘"‘M/ ‘/‘ ‘"“‘A\‘ T I "y
; \‘ ““‘ m‘ "I g «‘N\" i Q“"A iy
‘N““‘ H“«w 'mg h‘\, ‘\\ M\‘A‘\ 1

4

¢ M‘ "0 /"\q \"Q 7 V‘\ \ ‘\0 \‘\“‘
‘43‘\\”&“‘“‘“ ‘

1

e

,

18



VTT TECHNICAL RESEARCH

0.018

0.016

0.014

0.012

CENTRE OF FINLAND

Fast homogeneous flux
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Thermal homogeneous flux
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Numerical solution of homogeneous flux in Serpent
e Starting point: Homogenized constants and boundary conditions

e Form matrix M:

M =D (it—is— ! F)
keff
e Compute complex Schur form M =UTU*

— Hessenberg reduction and QR decomposition based on Householder
transformations

— QR updates with Wilkinson shift
= Matrix functions (matrix square root, matrix exponential) can be computed
efficiently with Parlett method
— Form boundary conditions
— Solve coefficients (Gaussian elimination with partial pivoting)

— Compute DFs and PFs based on local homogeneous solution
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ummary

e In the absence of reflective boundary conditions, the computation of
discontinuity and peaking factors requires solving diffusion equation for the
homogenized node.

— General solution is a linear combination of matrix functions (called basis
functions)

— Coefficients of basis functions computed based on boundary conditions

— Boundary conditions should be consistent with nodal code

e Method implemented in Serpent 2:
- 2D
— Rectangular and hexagonal geometry

— Boundary and corner net currents as boundary condition

e Future work:
— Need for other types of boundary conditions?

— Extend methodology to 3D.
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