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Burnup equations

• Form a system of ordinary differential equations:

n′ = An , n(0) = n0 , (1)

• Matrix exponential solution

n = eAtn0 (2)

• There are various numerical algorithms but many of them are
computationally expensive and of dubious numerical quality [1]

[1]C. MOLER and C. VAN LOAN, Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later, SIAM Rev., 45 (2003).
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Burnup matrix

• Contains both positive (off-diagonal) and negative (diagonal) elements

• Extreme cases encountered:

– Size ∼ 1700× 1700

– Norm
∥A∥ ∼ 1021

– Eigenvalues
|λ| ∈ [0, 1021]

– Timestep
t ∼ 101 . . . 107 s

⇒ Matrix exponential usually not computed for a full system!

– In ORIGEN short-lived nuclides are removed from the burnup matrix
before computing the matrix exponential solution
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Rational approximation of matrix exponential

• Eigenvalue decomposition (General case: Jordan form)

– A = TΛT−1

⇒ eAt = T eΛ tT−1 and r(At) = T r(Λt)T−1

• Approximate eAt by r(At), where r(z) approximates ez at the
eigenvalues of A

• Example: Matlab’s matrix exponential function expm based on Padé
approximation

– Approximation accurate near the origin

⇒ Not applicable to burnup matrices when short-lived nuclides are
included
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Burnup matrix eigenvalues

• Burnup matrix eigenvalues are bounded near the negative real axis [2]

• Burnup matrices are connected with the class of singular
M-matrices [3]

• Wedge condition for the spectrum around the negative real axis [3]

Λ(A) ⊂ Wn =
{
z = reiθ

∣∣ r > 0 , |θ| ≥ π

2
+

π

n

}
(3)

⇒ To compute the matrix exponential, rational approximation accurate
near the negative real axis should be chosen.

[2] M. PUSA and J. LEPPÄNEN, Computing the Matrix Exponential in Burnup Calculations, Nucl. Sci. Eng., 164, 2, 140–150 (2010)

[3] M. PUSA Numerical Methods for Nuclear Fuel Burnup Calculations D.Sc. Thesis, Aalto University (2013). (VTT Science 32)
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Chebyshev Rational Approximation Method (CRAM)

• CRAM approximation of order k is defined as the unique rational
function r̂k,k such that

ε̂k,k = sup
−∞<x≤0

|r̂k,k(x)− ex| = inf
rk,k∈πk,k

{
sup

−∞<x≤0
|rk,k(x)− ex|

}
. (4)

• It can be characterized as the best rational approximation on the
negative real axis
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Accuracy of the CRAM approximation of order 16 in the
complex plane

log10 |ez − r̂16,16(z)|
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Computation of CRAM approximations

• Determining best rational approximations is difficult

– Requires tailored algorithms and high-precision arithmetics.

– Polynomial coefficients for approximation orders 1, . . . , 30 computed
previously and published with 20 digits of accuracy:

A. J. CARPENTER, A. RUTTAN, and R. S. VARGA, Extended Numerical Computations on the

‘1/9’ Conjecture in Rational Approximation Theory, Rational Approximation and Interpolation in

Lecture Notes in Mathematics, Vol. 1105, 383–411, P. R. Graves-Morris, E. B. Saff, and

R. S. Varga, Eds., Springer-Verlag (1984).

• To compute r̂k,k(At), where r̂k,k(z) = p̂k(z)/q̂k(z), the zeros of q̂k(z) need to
be known with a high accuracy

• Coefficients by Carpenter et al. enable computation of the poles for
approximations up to order 16.

⇒ Highest-order of CRAM considered previously for computing the matrix
exponential
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Determining best approximations

• Error functions corresponding to best approximations equi-oscillate
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• Remez algorithm
1. Assume {ti}2k+2

i=1 ⊂ [−1, 1] and find real polynomials pk and qk and a parameter ε > 0 such
that

e
ϕ(ti) −

p(ϕ(ti))

q(ϕ(ti))
+ (−1)

i
ε = 0 , i = 1, . . . , 2k + 2 , (5)

where qk+1 = 1.

2. Assume rk,k ∈ πk,k and ε > 0 and find the 2k + 2 local extreme points of the function

E(t) = e
ϕ(t) − rk,k(ϕ(t)) (6)

in the interval [−1, 1].
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Implementation of Remez algorithm

• Remez algorithm was implemented using Matlab’s Symbolic Toolbox
with high-precision arithmetics (vpa)

• CRAM coefficients were computed for approximation orders 2, 4, . . . , 50.

– Computation of approximation of order 50 (1000 digits, tolerance
10−200) took 1 hour 10 minutes CPU time in Matlab.

– In 1984, one Newton update took 15 hours CPU time (230 digits,
tolerance 10−200) for approximation order 30!
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Implementation of Remez algorithm
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Accuracy of CRAM

• CRAM of order 16 can provide very accurate and efficient solution to burnup
equations without the need to exclude any nuclides [2, 4]

• Accuracy of CRAM or order k is compromised if a nuclide concentration
diminishes significantly during the time step [5].

– Cut-off ≈ 10−kni(0)

• Approximation order of CRAM should be selected according to [6]

k > max
i

(
log10

{
ni(0)

max{eAiitni(0), 10−s}

}
+ d

)
, (7)

where

– Nuclide concentrations smaller than 10−s can be treated as zero

– Result is wanted with d digits of accuracy

[2] M. PUSA and J. LEPPÄNEN, Computing the Matrix Exponential in Burnup Calculations, Nucl. Sci. Eng., 164, 2, 140–150 (2010)

[4] A. ISOTALO and P. A. AARNIO, Comparison of depletion algorithms, Ann. Nucl. Energy, 38, 2–3, 261–268 (2011).

[5] M. PUSA Accuracy Considerations for Chebyshev Rational Approximation Method (CRAM) in Burnup Calculations In proc. M&C 2013, Sun Valley,

ID, May 5-9, 2013.

[6] M. PUSA Higher-Order Chebyshev Rational Approximation Method (CRAM) In Proc. PHYSOR 2014, Kyoto, Japan, Sept 28 – Oct. 3 (2014).13



Example: burnup system with 1606 nuclides

• PWR pin-cell lattice irradiated to 0.1 MWd/kgU, t = 12.5 days
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Example: Decay system with 1531 nuclides
• In the absence of neutron irradiation, some of the nuclide concentrations tend

fast to zero
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• Define cut-off 10−151/cm3 (single nuclide in a cubic km)

⇒ Accuracy considerations:

– For t < 104 s, low approximation orders can be used

– To reach 5 digits of accuracy, approximation order k = 36 is required for
t = 105 s and k = 40 for t = 1015 s= 32 million years

– For k = 44, time-step can be extended to infinity without compromising the
accuracy of the solution!
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Example: Decay system with 1531 nuclides
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Summary

• The computation of matrix exponential has been considered
challenging in the context of burnup equations

• Burnup matrix eigenvalues were discovered to lie around the negative
real axis and CRAM can be characterized as the best rational
approximation there

• Computation of CRAM approximations is difficult

⇒ Approximations up to order 16 considered previously

• Coefficients computed recently for approximation orders 2, 4, . . . , 50

based on Remez algorithm.

• CRAM of order 16 can provide very accurate solution to burnup
equations without excluding any nuclides

• Higher-orders of CRAM enable accurate simulation of decay systems
for time steps of the order of millions of years.
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