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• Burnup equations and matrix exponential solution

• Characteristics of burnup matrices

– Known issues and recent discoveries

• Chebyshev Rational Approximation Method (CRAM)

• Some numerical results
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Burnup equations

• Form a system of ordinary differential equations:

n′ = An , n(0) = n0 , (1)

• Matrix exponential solution

n = eAtn0 (2)

• There are various numerical algorithms for computing the matrix
exponential but many of them are computationally expensive and of
dubious numerical quality [1]

[1]C. MOLER and C. VAN LOAN, Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later, SIAM Rev., 45 (2003).
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Known issues about burnup matrices

• Contain both positive (off-diagonal) and negative (diagonal) elements

• Time steps vary from a few hours to several months

• Size ∼ 1700× 1700

• Magnitudes of eigenvalues vary dramatically

– Short-lived nuclides inducing eigenvalues with largest magnitudes
are the most problematic

⇒ Matrix exponential previously not computed for a full system

– In ORIGEN short-lived nuclides are removed from the burnup matrix
before computing the matrix exponential solution
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Elements of burnup matrices

• Diagonal elements ≤ 0, off-diagonal elements ≥ 0
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Figure 1: Logarithmic variations in the absolute values of burnup matrix
elements.
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Elements of burnup matrices
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Figure 2: Close-up of the matrix, corresponding to the 36 lightest nuclides
ranging from 1H to 18O.
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Eigenvalues near the negative real axis
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• It was discovered that the eigenvalues of
burnup matrices are bounded near the
negative real axis [2]

• Chebyshev Rational Approximation
Method (CRAM) can be characterized as
the best rational approximation on the
negative real axis

⇒ CRAM can provide accurate solution to
burnup equations without excluding any
nuclides

[2]M. PUSA and J. LEPPÄNEN, Computing the Matrix Exponential in Burnup Calculations, Nucl. Sci. Eng., 164, 2, 140–150 (2010)
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Sparsity Pattern

• Nuclides sorted according to their ZAI index

• Production of by-product nuclides (1H, 2H, 3H, 3He, 4He) has been taken into
account
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Figure 3: Burnup matrix sparsity pattern
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Sign pattern

• A matrix Z ∈ Rn×n is called a Z-matrix if its off-diagonal elements are
non-positive, i.e. zij ≤ 0 for i ̸= j.

⇒ Negatives of burnup matrices are Z-matrices

• Theorem:
eAt ≥ 0 for all t ≥ 0 if and only if −A is a Z-matrix.

• Z-matrices connect burnup matrices with the theory of non-negative
matrices.
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Graph-theoretical Approach

• Consider the graph related to burnup matrices

• Set of strongly connected components (SCCs) corresponds to a set of
nuclides such that there is a transmutation path from every nuclide to
every other nuclide in the set.

• Example: successive (n,γ) and (n,2n) reactions ⇒ closed cycle of size
two

• After computing the SCCs and sorting them, the corresponding linear
systems can be solved independently in this order

• Matrix eigenvalues are union of the eigenvalues corresponding the
SCCs
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Strongly Connected Components
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Conclusions about SCCs of Burnup Matrices

• Fissile nuclides and fission product nuclide belong to different SCCs

• By-product nuclides 1H, 2H, 3H, 3He and 4He form a sink meaning no
nuclides outside this group are produced from these nuclides

• Eigenvalues of a burnup matrix = eigenvalues related to its SCCs.

⇒ Most of burnup matrix eigenvalues coincide with its diagonal
elements (non-positive)

⇒ Eigenvalues related to each closed-cycle-system can be
considered separately

⇒ Especially the eigenvalues related to by-product nuclides can be
considered separately
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Real Parts of Eigenvalues (1)

• Production of by-product nuclides not taken into account ⇒ number of
nuclides increases in fission.

• Production of by-product nuclides taken into account ⇒ number of
nuclides increases in fission and all reactions producing a by-product
nuclide in addition to daughter nuclide.

• Theorem: Every solution n of system n′ = An remains bounded as
t → ∞ if and only if the following holds

(i) Re (λ) ≤ 0 ∀ λ ∈ Λ(A)

(ii) Every λ ∈ Λ(A) with Re (λ) = 0 is a semisimple eigenvalue, i.e. the
geometric and algebraic multiplicities agree.
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Real Parts of Eigenvalues (2)

• Concentrations of by-product nuclides grow unboundedly as t → ∞.

– Neutrons are not part of the system but are assumed to be added to it
constantly

– In β− decay of 3H to 3He, neutrons are converted to protons

– In (n,p), (n,d) and (n,t) reactions of 3He, the number of nuclides increases
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• SCC corresponding to by-product nuclides can have positive eigenvalues!

• All other burnup matrix eigenvalues have non-positive real parts.
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Imaginary Parts of Eigenvalues (1)

• Let −A ∈ Zn, then:
−A is a M -matrix if and only if every eigenvalue of A has a
non-positive real part

• A ∈ Lk
0 if and only if A is a Z-matrix and each k × k principal

sub-matrix of A is an M -matrix, but there is at least one
(k + 1)× (k + 1) principal sub-matrix that is not an M -matrix.

⇒ SCC corresponding to by-product nuclides belongs to L2
0.
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Recap

• Graph of burnup matrix ⇒ Nuclides can be divided into SCCs

• Burnup matrix eigenvalues = Eigenvalues related to the SCCs

• By-product nuclides form one SCC and the corresponding matrix
belongs to L2

0.

• All other SCCs correspond to matrices that are M -matrices
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Eigenvalues of burnup matrices

• Theorem: Let A ∈ Rn×n be an augmented burnup matrix. If n = 2,

Λ(A) ⊂ (−∞, 0] .

Otherwise, if the nuclides 1H, 2H, 3H, 3He and 4He are included to the
burnup system, A has four eigenvalues corresponding to them.
Exactly one of these eigenvalues is real-valued and positive, while the
other three eigenvalues have non-positive real parts.

The remaining eigenvalues of A are confined to the wedge

Wn =
{
z = reiθ

∣∣ r > 0 , |θ| ≥ π

2
+

π

n

}
(3)

around the negative real axis.
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Eigenvalues of burnup matrices
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Chebyshev Rational Approximation Method (CRAM)

• Burnup matrix eigenvalues are bounded near the negative real axis

• CRAM approximation of order k is is defined as the unique rational
function r̂k,k such that

sup
−∞<x≤0

|r̂k,k(x)− ex| = inf
rk,k∈πk,k

{
sup

−∞<x≤0
|rk,k(x)− ex|

}
.

• It can be characterized as the best rational approximation on the
negative real axis
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Burnup Matrix Exponential

• Fresh PWR pin-cell, 1606 nuclides, t ≈ 8.64× 105 s, ∥A∥ ∼ 1021

Figure 4: Logarithmic variations in the elements of the matrix exponential
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Accuracy of CRAM of order 16
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What about the positive eigenvalue?

• λ+ ∼ 10−12

• When λ+t → 1, nuclide
concentrations begin to
increase unrealistically
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1011 s ≈ 3171 years
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Summary

• The computation of matrix exponential has been considered
challenging in the context of burnup equations

• Burnup matrix eigenvalues were discovered to lie around the negative
real axis

• CRAM can be characterized as the best rational approximation on the
negative real axis and it can provide very accurate solution to burnup
equations without excluding any nuclides

• New knowledge on burnup matrices and their mathematical properties
was discovered during this work
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Further reading
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• M. PUSA, Rational approximations to the matrix exponential in burnup
calculations, Nucl. Sci. Eng., 169, 2, 155–167 (2011)

• M. PUSA, Correction to partial fraction decomposition coefficients for
Chebyshev rational approximation on the negative real axis,
arXiv:1206.2880v1[math.NA] (2012).

• M. PUSA and J. LEPPÄNEN, Solving linear systems with sparse
Gaussian elimination in the Chebyshev rational approximation method
(CRAM), accepted for publication in Nucl. Sci. Eng. (Nov 2013).

• M. PUSA, Numerical methods for nuclear fuel burnup calculations,
D.Sc. Thesis, VTT Science, 32,
http://montecarlo.vtt.fi/download/S32.pdf
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