
EXTENDING
SERPENT

Staffan Qvist!
Department of Physics & Astrophysics  
Divison of Applied Nuclear Physics

Serpent capabilities

What it can do:!
— Almost everything
!

What it can’t do (right now):!
— Equilibrium cycle analysis
— (Direct) DPA calculations
— Make your input deck and design your core for you

Equilibrium cycle
‣ Most cores load, shuffle and discharge fuel over and over
‣ Eventually, an “equilibrium” is reached where each new cycle

looks like the preceeding one
‣ The equilibrium state can be defined by looking at the relative

difference between suceeding cycles of a few variables:
1. Multiplication factor (at each burnup step within cycle)

2. Isotopic concentrations (at each burnup step within cycle)

3. Cross-sections (at each burnup step within cycle)

4. Flux/Spectrum/Power parameters etc..
‣ Logial convergence criteria: Differences < Statistics

Equilibrium cycle
‣ 2 possible ways to approach the problem:!

1. Get to equilibrium state as quickly as possible
2. Accurately model approach to equilibrium

‣ EDIS (Every Day I’m Shuffling)!
Runs a 2-stage scheme (to be explained)
Considers 3 things:
‣ Convergence of keff and isotopic compositions
‣ Criticality over cycle (adjusts cycle time to try to find it)
‣ Peak DPA & burnup over cycle

The two-step approach (1)
‣ For quickly reaching the equilibrium state!

‣ S1: Serpent settings tailored for fast results, low accuracy, bad statistics,
Runs to move fuel <x> times through its path through the core

‣ S2: Run at “production” statistics and settings for a maximum of <y> times
through the core (or, hopefully, until convergence settings are reached)  

‣ To accurately model approach to equilibrium!
‣ S1 = S2

 
<x> and <y> depend heavily on the number of batches in the system!

The critical cycle approach
1. Run S1-S2 for an initial guess for cycle time
2. Define min/max keff and reactivity swing type:  

1: Positive, 2: Negative, 3: Local extreme
3. Adjust cycle time based on swing type
4. Run S1-S2 for adjusted cycle time
5. Interpolate between results from (2) and (4)
6. Run S1-S2 for new guess for keff
7. If initial cycle time guess was good, keff should be at or

very near target (usually = 1.00 + Δx)  
Otherwise, oops! Try again with better guess for cycle time

EDIS structure
1. Create Serpent input file

2. Define shuffling scheme

3. Adjust settings

User input

2. Check setting input types

1. Delete old files

3. Identify Serpent geometry input

Precondition

4. Find source norm. mode

5. Create STAGE-1 files

6. Identify burnable materials

7. Verify/add "printm 1" setting

8. Add depletion to input

9. Set nuclide inventory

10. Verify shuffling scheme

1. Run STAGE-1 (S1)

Equilbrium cycle calculations

Check for convergence

 Make STAGE-2 files (S2) S1 unconverged

1. Run STAGE-2 (S2) Check for convergence

Analyse reactivity swing S2 converged

 Make STAGE-1 files (S1) with
updated cycle time

New cycle time

1. Run STAGE-1 (S1) Check for convergence

 Make STAGE-2 files (S2) S1 unconverged

1. Run STAGE-2 (S2) Check for convergence

Analyse reactivity swing S2 converged

Guess critical cycle time

 Make STAGE-1 files (S1) with
guess for critical cycle

1. Run STAGE-1 (S1) Check for convergence

 Make STAGE-2 files (S2) S1 unconverged

1. Run STAGE-2 (S2) Check for convergence Converged critical eq. cycle!

S1 converged

S1 converged

S1 converged

DPA calculation

1. Add 100-bin flux detector in each cell

2. Run DPA-file

3. Calculate discharge DPA (100 group)

STAGE-1
Settings for Serpent to

make it possible to quickly
reach equilibrium.

- Neutron histories
- FP cut-offs
- Energy grid structure

STAGE-2
Settings for Serpent to
accurately calculate the

target eq. cycle

(recommended -- better
statistics than STAGE-1)

Example problem
Large 16-batch (TWR-type) B&B core fed by depleted uranium
Complicated 2D shuffling scheme for power flattening
Problem: Find equilibrium core performance, critical cycle
time, burnup and peak DPA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Discharge

Fresh fuel

Core center Core periphery

Material convergence

0 5 10 16 (1ïtime through) 20 25 32 (2ïtime through)0

0.005

0.01

0.015

0.02

Iteration

D
en

sit
y

in
 c

el
l 5

4

Puï239
Puï241 x 500
Uï238

Isotope density in low-flux cell of 16-batch system, modeled as
80 homogenized core cells. Error in 241Pu effectively sets the
number of required iterations

Multiplication convergence
System (fed by DU) keff converged within statistics before
(rare) isotopic compositions converge (as expected)

5 10 16 (1ïtime through) 20 25 32 (2ïtimes through)0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Iteration

Sy
st

em
 k
ïe

ffe
ct

iv
e

Critical cycle mode
keff convergence criteria: 200 pcm, Material convergence criteria = 5%,  
5 burnup steps, Criticiality search = on

0 5 10 15 20 25 300

0.2

0.4

0.6

0.8

1

Iteration

K
ïe

ffe
ct

iv
e

at
 B

O
EC

Critical cycle mode
keff convergence criteria: 200 pcm, Material convergence criteria = 5%,  
5 burnup steps, Criticiality search = on

Peak HT9 steel dpa: 407 -> 482 -> 555 (critical cycle)

5 10 15 20 25 300.9

0.92

0.94

0.96

0.98

1

1.02

Iteration

Initial guess cycle (S1) (320 days)

Criticalityïguess cycle (S1) (523 days)

Adjusted cycle (S1) (400 days)

Initial guess cycle (S2)

Standalone EDIS
Needs 2 settings: Shuffling scheme and S1/S2

Needs 2 files: Main file(s) + seperate file with shuffled materials!

Right now: maintains geometry, shuffles materials  
(could/should be adjusted to shuffle universes)

Arbitrary shuffling scheme is possible

Arbitrary reprocessing at each shuffling step possible

Possible extension:  
Shuffling scheme optimization? Needs good theory + genetic

algorithms.. definitely impractical, maybe impossible..

Shuffling possibilites — 16 batch (cylinder) model = 7.6x1012 paths

Calculating DPA
DPA tallying for structural materials implemented in ADOPT  

(and ADOPT stand-alone module EDIS)

!

Uses 100-group table effective dpa cross-section structure developed

for the ANL SPECTER code for each element implemented. When

compound cross-section is available (ex. for SiC), these are used.

!

To use outside of ADOPT or stand-alone EDIS:

1. Add pre-defined 100-group flux detector structure to Serpent input

2. Run Serpent

3. Run 1500-line Python script on the detector output

Core (owl) design process

Core (owl) design process

Core (owl) design process

ADOPT

Code run
options

Neutronics
Peaking factors
Flux, Fast flux

Core
parameters

Design
constraints

Output options

User input Preprocessing

Iterative solver (20 modules)

Postprocessor

OutputNeutron transport

wInterassembly
gap

Cladding

Wire-wrap

Fuel

Pitch

Diameter Cladding
thickness

Bond

Interior flow channel

IA gap thickness

Duct wall thickness

Duct side length

Duct wall spacing (DWS)

Edge flow channel

Cold
gap

ADOPT
1. Reads a 100-parameter input file
2. Calculates thermal-hydraulic and structural-mechanical

“optimal” solution adhering to 15 set constraints
3. Creates a full-core Serpent input deck
4. Runs Serpent and gathers needed data  

(Flux, Power distribution, DPA etc.)
5. (Optionally) runs a shuffling scheme until equilibrium

convergence using the EDIS module
6. Reruns (2-4/5) until convergence
7. Plots and prints data for optimised and converged core

design (several hundred output variables)  

ADOPT output
• Full-detail core geometry
• Thermal-hydraulic, structural mechanic and neutronic

(incl. fuel cycle) performance  

ADOPT limitations
Design code (not analysis code) — All methods are crude  

1. Cannot evaluate core transient safety performance

2. Does not create or model control systems

3. Geometry options are limited

4. Larger cores are modelled by concentric cylinders rather than

individual assemblies, potentially introducing errors

5. Optimisation strategy only directly applicable for breeder-type cores

6. (Currently) no detailed model for FCMI

7. (Currently) only one fuel assembly design (at peak power conditions)

per run

Serpent+Friends capabilities

What it can do:!
— Almost everything
— Equilibrium cycle analysis
— (Direct) DPA calculations
— Make your input deck and design your core for you :)

Application — For what are we designing this core?!
• Long-life (30 year) 50 MWe “battery type” core
• Autonomous operation, “zero” reactivity swing
• No in-cycle fuel shuffling / reprocessing / conditioning
• Small and modular for mass production in factory
• Near-term “realistic” and licensable design

!

 Cheap, clean, deployable, proliferation resistant  
and safe energy production for the world

Core design challenge!

ADOPT boot camp!
5th November 2013

Congrats Ryan and Kyle,!
winners of the worlds first (!)!
live core design competition!

Thank you!

(Serpent wish list addition)

Possibility to split up xs-loading, transport and
depletion with seperate calls:  
sss2 inputfile -transport, sss2 inputfile -depletion  
 
Keep xs-data in memory while allowing changes to
the input and re-running transport and/or depletion
(from something eq. to .burn-file)

