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Motivation 

• No current long term solution for the spent fuel issue 

• Transuranic (TRU) production is higher in uranium based light water reactors (LWRs) 

• Uranium utilization of LWRs is very low 
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Introduction 

• Advantages of Light Water Fast Reactors 

• Light water technology and infrastructure is well established 

• TRU burning is most efficient in fast spectrum reactors 

• RBWR Advantages: 

• RBWR-AC (Breeder Reactor) 

• Conversion ratio of 1.0 (or 1-2% above 1.0) 

• RBWR-TB2 (Burner Reactor) 

• Low conversion ratio of ~0.5 

• Closed Fuel Cycle 

• Uses existing ABWR Technology 
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DOE NEUP Projects 

Michigan/UCB/MIT 

 
• Generate Equilibrium Cycle for both the RBWR-AC and 

RBWR-TB2 

• Perform Reactivity Coefficient Analysis 

• Doppler Reactivity Coefficient 

• Void Reactivity Coefficient 

• Stability and Transient Analysis for both cores 

• Recirculation Pump Failure is of interest since this could lead to 
an asymmetric reduction in cooling 

• Events such as Turbine Trips and Main Steam Isolation Valve 
Closures are not expected to be as significant due to a smaller void 
coefficient and larger Doppler coefficient 
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Resource-Renewable Boiling Water Reactor 

(RBWR) 

• The RBWR is a reactor design originally proposed by Hitachi 
which is capable of achieving a conversion ratio of 1.0 

• Design features include: 

• Short, parfait style core 

• Tight pitch fuel lattice 

• Smaller coolant mass  
flow-rate 

• Large exit void fraction 

• Less negative core void 
reactivity coefficient 

• Y-shaped control blades 
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RBWR-AC 

• The RBWR-AC is a tight 

pitch, boiling water reactor 

with a high core average 

void (~53%) / hard 

spectrum 

• Parfait style assembly with  

    internal blankets 

• Features a                            

conversion ratio                                 

of 1.0 

8 



RBWR Characteristics 

• Hard neutron spectrum compared to typical LWRs 

• Average core void fraction of 53% compared to 36% for the ABWR 

• Double peaked axial power distribution provides large axial 
heterogeneity 

• RBWR requires 3D cross sections and axial discontinuity factors 
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Coupled Code System for RBWR Simulation 

Lattice Code: 

SERPENT 

GENPMAXS 

Cross Section 

Library 

(PMAX) 

Neutron Flux 

Solver: 

PARCS 

T/H: PATHS 

Equilibrium 

Search 
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Monte Carlo XSEC Generation 

• Motivation: 

• Past methods used 12 group, homogenized cross sections from the 2-D 

lattice physics code HELIOS. 

• 3D Monte Carlo studies by MIT showed that there are some deficiencies in 

using this approach for the axially heterogeneous RBWR 

 

• Challenges: 

• Computational burden due to multiple Monte Carlo calculations 

• 22 burnup steps x 20 branches x 6 histories 

• ~2,640 Serpent cases, take about 1-2 weeks to run 

• Large amount of memory required to store cross sections 
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Cross Sections with SERPENT 

• SERPENT – 3D Monte Carlo 

• Produces homogenized multi-group constants for deterministic reactor 

simulator calculations 

• Calculates ADFs for boundary surfaces and corners 

• Works for high void cases in RBWR where deterministic approaches 

break down 

• Use SERPENT to generate 3D cross sections for PARCS (PMAXS) 

• GenPMAXS code used to convert cross sections to PMAXS format 

along with calculation of the following: 

• Axial discontinuity factors 

• Zone-specific burnup 
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Model Construction 

• Generate benchmark assembly level models and 3D cross 

sections 

• Comparison of 2D and 3D cross sections for assembly level 

analysis showed the need for axial discontinuity factors 

• Generate 3D cross section libraries for depletion 

• Perform Equilibrium Cycle Analysis using 3-D Serpent 

generated cross sections 
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       RBWR Benchmark Model 

• Fissile zones composed of enriched 

plutonium and TRU 

• 5 fuel pin types with varying enrichments 

• Blanket regions composed of depleted 

uranium 

• 12 energy groups 

• Reflective boundary conditions 

• Assembly is modified to fit within a 

regular hex geometry 
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RBWR Assembly with  

2D Serpent Cross Sections 

• Generated 2D homogenized cross sections using Serpent 

• A single assembly PARCS simulation with the 2D cross 

sections was used to check the solution 

• Noticeable different between 3D Serpent assembly calculation 

and 2D cross sections 

• Desire to use 3D cross sections to correct for differences 
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Method K Difference from Serpent (pcm) 

3D Serpent 1.09601 - 

3D PARCS, 2D Serpent XS 1.05422 4179 



RBWR Assembly with  

3D Serpent Cross Sections 

• Generated 3D homogenized cross sections using Serpent 

• A single assembly PARCS simulation with the 3D cross 

sections was used to check the solution 

• There is still a difference seen between the 3D Monte Carlo 

solution and the 3D deterministic solution 

• To correct for this, axial discontinuity factors were created 
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Axial Discontinuity Factor Generation Process 
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Serpent Output 

GenPMAXS extracts data 

Check neutron balance 

Calculate Homogeneous 

surface flux using NEM 

Calculate axial 

Discontinuity factor 

Modify diffusion 

coefficient 

Print PMAXS 

cross section files 

ZDF > 0 and ≤2 

Yes 

No 



Axial Discontinuity Factors 

• Defined as the heterogeneous surface flux 

divided by the homogeneous surface flux 

• The heterogeneous surface flux is 

calculated by using Serpent partial currents 

• The homogeneous surface flux is generated 

by solving NEM in a single node 

• Discussed in more detail next slide 
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NEM Solver 

• Start with transverse integrated 1D diffusion equation: 

 

• Approximate the solution with 4th order Legendre polynomials: 

 

• Solve for the 5 coefficients using: 

• Heterogeneous cell average flux 

 

• Net currents on left and right surfaces 

 

 

• Weighted residual equations 

 

 

• Solve for the left and right surface fluxes: 
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Treatment of the Diffusion Coefficient 

• Any discontinuity factor that is <0 and >2 is adjusted since this 
causes instabilities within PARCS 

• This occurs when the gradient on the boundary is large 

• Typically on the interface between blanket and fissile regions due to 
steep change in the flux 

• Diffusion coefficient is modified to preserve the net surface current 

• Iterative process until the axial discontinuity factor lies within the 
specified bounds 
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surface flux using NEM 

Calculate axial 

Discontinuity factor 

Modify diffusion 
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RBWR Assembly Simulation 

Method K Difference from Serpent (pcm) 

3D Serpent 1.09601 - 

3D PARCS without ZDFs 1.08772 829 

3D PARCS with ZDFs 1.09601 0 

24 Fast (Group 1) Flux Comparison Thermal (Group 9) Flux Comparison 
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Equilibrium Cycle Analysis 

• Develop appropriate set of cross sections to capture core 

conditions 

• History and branch structure for the cross sections 

• Process the cross sections using GenPMAXS code 

• Also calculate axial discontinuity factors and node burnups 

• Perform coupled code analysis using PARCS-PATHS 

• PARCS is a nodal diffusion code 

• PATHS is a drift flux thermal-hydraulics code 

• Preliminary Equilibrium Cycle results 
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• 4 history cases: 

• Reference history case – reference void and temp. distribution, CR out 

• Low flow history case – low flow void distribution, ref. temp., CR out 

• High flow history case – high flow void distribution, ref. temp., CR out 

• 1 CR history case: 

• CR inserted through upper blanket, remaining reference conditions 

• 10 branch cases: 

• Reference branch 

• Low uniform fuel temperature perturbation over the whole assembly 

• High uniform fuel temperature perturbation over the whole assembly 

• Low flow void distribution (80% flow) 

• Medium-low flow void distribution (90% flow) 

• Medium-high flow void distribution (110% flow) 

• High flow void distribution (120% flow) 

• CR inserted at reference conditions 

• CR inserted with low flow void distribution 

• CR inserted with high flow void distribution 

Branching Methodology for RBWR 
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Temperature Branches 

• Nick Brown at BNL 
performed a parametric 
study: +300K fuel temp. 

• Looked at perturbing 
single regions and the 
integral assembly 

• No spectral variation 
seen 

• Can perturb temperature 
simultaneously for 
entire assembly 
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Void Branches 

• Nick Brown also looked at 
this: +20% coolant density 

• Looked at perturbing single 
regions and the integral 
assembly 

• Spectral variation seen 
towards top of the assembly 

• Must physically perturb void 
distribution 

• Use Coupled 
PARCS/RELAP with 2D 
cross sections to develop 
void profiles for various 
flows 
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CR Branches 

• For first take at equilibrium cycle, generate 

cross sections for control rod fully inserted 

in assembly 

• Second time, generate cross sections for 

control rod inserted at several different 

levels within the assembly 

• Unrodded cross sections for regions towards 

the top of the assembly get complicated 

since there are second order effects from 

where exactly the rod is positioned 
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GenPMAXS Capabilities 

• Converts Serpent and Serpent2 cross sections to PMAXS format 

• Node-wise burnup from 3D calculation 

• Previously calculated assembly averaged burnup 

• ZDF Control 

• Bounds for ZDFs 

• Capability to set partial derivatives to zero (Reference only ZDFs) 

• Set IHMD and cell volume 

• Transport cross section treatment 

• Absorption cross section adjustment for neutron balance 
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Depletion Analysis 

• PARCS and Serpent perform depletion two 
different ways: 

• Serpent depletes using an average assembly 
burnup 

• PARCS depletes based upon individual node 
burnups 

• This is a problem when PARCS attempts to read 
cross sections based on a burnup other than 0 
MWd/kgU 

• One solution involves determining the 
individual node-wise burnups directly from the 
Serpent simulation 
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Equilibrium cycle search flowchart 

            

 

 

• Begin with fresh core and load fuel 

after each burnup cycle using 

Hitachi specified loading pattern 

 

• Explicitly model control rod 

pattern at each time step of 

depletion 

 

• Convergence criterion: 0.1 GWD/T 

for Infinite norm of node-wise 

burnup matrix at EOC 
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• On the interface, large currents can 
cause the homogeneous flux to 
become negative 

• This leads to negative ZDFs and 
negative fluxes in PARCS 

• To address this issue, the ZDFs 
were adjusted by modifying the 
diffusion coefficient to fit within 
certain bounds (0.85-1.15) 

• This works great for reference 
conditions but introduces another 
issue when dealing with multiple 
branches and histories 

ZDF Generation 
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• Instead of adjusting the diffusion 

coefficient, a cap was placed on 

the ZDFs (0.85-1.15) 

• Single assembly benchmark case 

was used to test this effect 

ZDF Bounding Treatment 

Method K Difference from Serpent (pcm) 

3D Serpent 1.09601 - 

3D PARCS without ZDFs 1.08772 -829 

3D PARCS with ZDFs 1.09601 0 

3D PARCS with ZDFs no 

Diffusion coefficient adjustment 

1.09645 44 

Calculate Homogeneous 

surface flux using NEM 

Calculate axial 

Discontinuity factor 

Modify diffusion 

coefficient 

ZDF > 0 and ≤2 No 

Yes 
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• 3D Cross Sections 

• 1 history, 8 branches 

• Bounded ZDFs (0.85 – 1.15) 

• No iteration on the transport cross 

section 

• Node-wise burnup from Serpent 

• System is slightly subcritical over 

equilibrium cycle (0.996-0.994) 

Equilibrium Cycle 
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Summary/Conclusions 

• PARCS with Serpent 3D cross sections for the RBWR 

• Successfully reproduced 3D Serpent solution for an assembly benchmark with 
PARCS using 3D Serpent cross sections with ZDFs 

• For 3D core Equilibrium Cycle calculation, encountered some numerical instabilities 
with using large ZDFs.  

• Imposed restriction on the magnitude of the ZDFs and eliminated the diffusion 
coefficient modification. 

• Successfully computed 3D equilibrium cycle 

• Continuing work 

• Expand cross section set to encompass a broader range of history and branch effects 

• Perform stability and transient analysis on equilibrium core 

• Serpent 

• Possible inclusions/modifications to Serpent: 

• Calculate GCU based burnups as well as total averaged burnup 

• Output formatting modifications for post-processing 
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Thank you for your attention! 

 

Questions? 
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