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Outline

• Nodal calculations

• Lattice calculations

– Homogenization

– Discontinuity and peaking factors

– Boundary conditions

• Multi-group diffusion equation in homogenized node

– Numerical solution
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Nodal Calculations

• System divided into nodes

• Solution based on multi-group diffusion theory
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1
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• Lattice calculations ⇒ homogenized constants for each node

• Nodes are coupled together using discontinuity factors obtained from
lattice calculations.
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Homogenization

• Assume solution Φhet(r, E,Ω) for the entire system

• Key idea in homogenization: preserve nodal reaction rates:
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V
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V
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Eg
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ϕ
g

het =

∫
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Eg
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Σx,gϕ
g
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∫
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dE ϕhet(r, E)Σx(r, E)

• Produce homogenized constants for every node considered in the
following nodal calculation
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Discontinuity Factors (1)

• Heterogeneous flux ϕhet and corresponding neutron current are known
to be continuous across node boundaries

• There is no physical requirement for the homogeneous flux ϕ (solution
of diffusion equation) to be continuous at the interfaces

• Discontinuity factors (DFs) couple the homogeneous flux ϕ to the
heterogeneous flux ϕhet

⇒ Continuity conditions for the nodal model
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Discontinuity Factors (2)

• Definition:

F g
i→j =

∫
Si−j

dS
∫
g
dE ϕhet(r, E)∫

Si−j
dS ϕgi (r, E)

φi φj

Node i Node j

Si−j

• Idea: On the boundary, ϕgi multiplied by the discontinuity factor F g
i→j

equals ϕghet on average.

– Heterogeneous flux is known to be continuous across the
boundaries.

– This information is used to couple adjacent assemblies together.

• Corner DFs can be defined similarly as DFs for the sides
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Pin-Power Reconstruction

• Due to homogenization, nodal solution does not provide detailed
pin-by-pin flux

• It is still necessary to have an estimate for the power distribution inside
the nodes

⇒ Peaking factors (PFs) couple homogeneous flux with pin-powers

• Peaking factor for pin i can be defined as:

pgi =

∫
Vi
dV

∫
g
dE ϕhet(r, E)κΣf(r, E)∫

Vi
dV ϕg(r)

• Power in pin i in node k can be computed as

Pi,k =

∑
g p

g
i ϕ

g

i

Pk
Ptot
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Homogenized Flux

• If boundary conditions comply with the heterogeneous calculation,

ϕ = ϕhet

and DE yields the same balance equation as transport equation.

• Balance equation:

−Jnet +
(
Σt −Σs

)
ϕ =

1

keff
Fϕ
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Data for nodal calculations (1)

• Exact computation of homogenized constants requires heterogeneous solution
for the entire system.

• Exact computation of DFs and peaking factors requires homogeneous flux
inside the node in addition to the heterogeneous solution.

• Typically it is assumed that assemblies can be modeled without their actual
surroundings as a part of an infinite lattice using reflective boundary conditions.

⇒ Homogenized constants for each assembly can be computed separately.

⇒ Net currents over assembly boundaries are zero.

⇒ Diffusion equation has constant solution ϕ = ϕ
0

het inside the assembly.

⇒ DFs and peaking factors can be computed based on ϕ0
het alone.

9



Data for nodal calculations (2)
• In some cases, reflective bound-

ary conditions cannot be used or
the approximation is poor:

– Reflectors

– Strong absorbers

– Assembly positioning

⇒ Node must be modeled with some surroundings.

⇒ Computation of DFs and PFs requires solving the homogeneous flux
inside the node.

⇒ Separate deterministic calculation is required to solve the multi-group
diffusion equation inside the homogenized node

– This capability will be implemented in Serpent
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Solution of Homogenized Flux

• Multi-group diffusion equation in 2D

−D△ϕ+
(
Σt −Σs

)
ϕ =

1

keff
Fϕ

⇔ D△ϕ = Aϕ

• In addition to homogenized group constants, the solution depends on
boundary conditions.

• Typically, boundary conditions are specified as net currents across
(parts of) the boundaries:

−Dg

∫
S

∂ϕg

∂n
dS = Jg

net,S

(Here n is the inward-pointing normal vector and Jg
net > 0 if the net flow

of neutrons is into the node)
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Solutions of Diffusion Equation (1)

• Diffusion equation (DE) in the homogenized node

D
(
ϕxx + ϕyy

)
=

(
Σt −Σs −

1

keff
F

)
ϕ = Aϕ

⇔ ϕxx + ϕyy = Mϕ , M =D−1A .

• Trial function
ψ(x, y) = eB1x+B2yc = eB1xeB2y

• Substitute to DE

ψxx +ψyy = B2
1ψ +B2

2ψ =
(
B2

1 +B
2
2

)
ψ

• Function ψ satisfies DE if

B2
1 +B

2
2 =M =D−1A
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Solutions of Diffusion Equation (1)

• Functions of the form

ψ(x, y) = eB1x+B2y , B2
1 +B

2
2 =M ,

satisfy DE. These functions are called basis functions.

• Matrix square root: If C2 = A , C is a matrix square root of A

• Examples of basis functions: e
√
Mx, e−

√
My and e

√
M
2 (x+y)

• General solution of DE is a linear combination of all basis functions.
Boundary conditions determine the coefficients of the basis functions.

• When constructing a solution to DE, the number of boundary
conditions must equal the number of basis functions.
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Case 1: Constant Current on Every Boundary

• Boundary condition: −D ∂
∂n

Φ(x, y) = JS
net/S = const., when (x, y) ∈ S.

– For example, ϕx(x, y) = −D−1JW
net/a when x = −a/2

JN
net

JS
net

JW
net JE

net

( a2 ,−
a
2 )(− a

2 ,−
a
2 )

(− a
2 ,

a
2 )

( a2 ,
a
2 )

• Solution must be of the form:

ϕ(x, y) = e
√
Axc1 + e−

√
Axc2 + e

√
Ayc3 + e−

√
Ayc4

• Unknown coefficient vectors c1, . . . , c4 are solved from 4 boundary conditions

• In this case, the solution is unique.
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Case 1: Constant Current on Every Boundary

• Forcing the homogeneous current to a constant value on each boundary can
lead to overestimation or underestimation of homogeneous flux near the
corners

• Some nodal codes use corner ADFs in addition to surface ADFs
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Case 2: N Boundary Conditions

• General idea: Choose N boundary conditions and N basis functions
and solve the coefficients of the basis functions

– Boundary conditions can be formed by dividing the boundary into N
parts:

−D
∫
Si

∂

∂n
ϕ(x, y)dS = JSi

net ,

where Si ⊂ ∂V is some part of the boundary.

– Normal derivative of the homogeneous flux doesn’t need to be
forced to a constant value on any part of the boundary
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Method to be implemented in Serpent

• 8 boundary conditions and 8 basis functions

• Basis functions:

f±
x = e±

√
Ax ,f±

y = e±
√
Ay ,f±

x+y = e±
√

A
2

(x+y) ,f±
x−y = e±

√
A
2

(x−y)

• Boundary conditions:

–
∫
S
Jhom(r) dS = Jnet,S for each boundary surface

–
∫
Γ
Jhom(r) dS = Jnet,Γ for each corner

SESW

SS

SN

ΓSEΓSW

ΓNEΓNW
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Examples

• The Benchmark for Evaluation and Validation of Reactor Simulations
(BEAVRS)

• Example 1: Red
(in the middle)

• Example 2: Blue w.
6 absorber pins

• Example 3:
Reflector I

R P N M L K J H G F E D C B A
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Example 1

2.5 assembly widths of surroundings.
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Example 1

Top: surroundings included. Bottom: reflective boundary.
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ADFs for Example 1

• 2.5 assembly widths of surroundings

Fast 1.0017 1.0030 1.0030 1.0007

Thermal 0.9916 0.9869 0.9936 0.9949

• Reflective boundary conditions

Fast 0.9973 0.9970 0.9971 0.9977

Thermal 0.9968 0.9980 0.9970 0.9970
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Example 2
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Example 3
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Numerical solution of homogeneous flux (1)

• Starting point: Homogenized constants and boundary conditions

• Form matrix M :

M = D−1

(
Σt −Σs −

1

keff
F

)
• Compute square root of M

– Explicit formulas for small matrices

– Iterative methods for larger matrices

• Compute basis functions

– Matrix exponential

– Matrices are small and well-behaved

• Form equations corresponding to boundary conditions

– Requires numerical integration
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Numerical solution of homogeneous flux (2)

• Solve coefficients of the basis functions

– Requires a linear solver

• Numerical building blocks:

– Matrix square root algorithm

– Matrix exponential algorithm

– Numerical integration method

– Linear solver

• After implementing these numerical methods, it is easy to refine the
method by changing the boundary conditions and/or basis functions.
Also, solution method can be extended to more complex geometries
and 3D.
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