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Outline
e Nodal calculations

e Lattice calculations
— Homogenization
— Discontinuity and peaking factors

— Boundary conditions

e Multi-group diffusion equation in homogenized node

— Numerical solution
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Nodal Calculations
e System divided into nodes

e Solution based on multi-group diffusion theory
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e Lattice calculations = homogenized constants for each node

e Nodes are coupled together using discontinuity factors obtained from
lattice calculations.
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Homogenization
e Assume solution ®y.(r, F/, 2) for the entire system
e Key idea in homogenization: preserve nodal reaction rates:
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e Produce homogenized constants for every node considered in the
following nodal calculation
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Discontinuity Factors (1)

e Heterogeneous flux ¢n.. and corresponding neutron current are known
to be continuous across node boundaries

e There is no physical requirement for the homogeneous flux ¢ (solution
of diffusion equation) to be continuous at the interfaces

e Discontinuity factors (DFs) couple the homogeneous flux ¢ to the
heterogeneous flux ¢pet

= Continuity conditions for the nodal model
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Discontinuity Factors (2)
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e Idea: On the boundary, ¢{ multiplied by the discontinuity factor F ,L_m
equals ¢{ _, on average.

— Heterogeneous flux is known to be continuous across the
boundaries.

— This information is used to couple adjacent assemblies together.
e Corner DFs can be defined similarly as DFs for the sides
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Pin-Power Reconstruction

e Due to homogenization, nodal solution does not provide detailed
pin-by-pin flux

e |t is still necessary to have an estimate for the power distribution inside
the nodes

= Peaking factors (PFs) couple homogeneous flux with pin-powers
e Peaking factor for pin 7 can be defined as:
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e Power in pin i in node k£ can be computed as
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Homogenized Flux

e If boundary conditions comply with the heterogeneous calculation,

5 — Ehet
and DE yields the same balance equation as transport equation.

e Balance equation:
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Data for nodal calculations (1)

e Exact computation of homogenized constants requires heterogeneous solution
for the entire system.

e Exact computation of DFs and peaking factors requires homogeneous flux
inside the node in addition to the heterogeneous solution.

e Typically it is assumed that assemblies can be modeled without their actual
surroundings as a part of an infinite lattice using reflective boundary conditions.
= Homogenized constants for each assembly can be computed separately.
= Net currents over assembly boundaries are zero.
=- Diffusion equation has constant solution ¢ = Eflet inside the assembly.

= DFs and peaking factors can be computed based on ¢, alone.
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Data for nodal calculations (2)

e In some cases, reflective bound-
ary conditions cannot be used or —
the approximation is poor: '

— Reflectors

— Strong absorbers o

— Assembly positioning

= Node must be modeled with some surroundings.

= Computation of DFs and PFs requires solving the homogeneous flux
inside the node.

= Separate deterministic calculation is required to solve the multi-group
diffusion equation inside the homogenized node

— This capability will be implemented in Serpent
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Solution of Homogenized Flux

e Multi-group diffusion equation in 2D

—DA¢ + (it — is) ¢ = F¢
< DA = Ad

¢ In addition to homogenized group constants, the solution depends on
boundary conditions.

e Typically, boundary conditions are specified as net currents across
(parts of) the boundaries:
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(Here n is the inward-pointing normal vector and JZ., > 0 if the net flow
of neutrons is into the node)
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Solutions of Diffusion Equation (1)

e Diffusion equation (DE) in the homogenized node

D (¢:1::1: + ¢yy) — (it - is — klﬁcf) ¢ — A¢
& ¢ to,, = Moy, M=D'A.

e Trial function
'l,b(x, y) — eBlw-l—Bg’yc — eBlaceBgy

e Substitute to DE
Yoo + Py, = Bl + B3y = (Bi + B3) ¢
e Function ¢ satisfies DE if
Bi+B;=M=D"A
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Solutions of Diffusion Equation (1)
e Functions of the form
P(z,y) =PV B+ By =M,
satisfy DE. These functions are called basis functions.

e Matrix square root: If C* = A, C is a matrix square root of A

M
e Examples of basis functions: eVMe, ¢=VMy gnd ¢V =2 (@)

e General solution of DE is a linear combination of all basis functions.
Boundary conditions determine the coefficients of the basis functions.

e When constructing a solution to DE, the number of boundary
conditions must equal the number of basis functions.
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Case 1: Constant Current on Every Boundary

e Boundary condition: —D 2 ®(z,y) = J5../S = const., when (z,y) € S.

— For example, ¢_(z,y) = —D *Jv;/awhen z = —a/2
JN a a
(-g,9)  Tmet (5.9)
W E
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(_27_2) g (97_9)
2 2 Jnet 2 2
e Solution must be of the form:
Qb(.fl?,y) — e\/Zaccl _|_ 6—\/Z:UC2 _|_ e\/Zyc3 + e—myc4
e Unknown coefficient vectors ci, ..., cq are solved from 4 boundary conditions

¢ In this case, the solution is unique.
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Case 1: Constant Current on Every Boundary

e Forcing the homogeneous current to a constant value on each boundary can
lead to overestimation or underestimation of homogeneous flux near the

corners

e Some nodal codes use corner ADFs in addition to surface ADFs

Thermal heterogeneous flux Thermal homogeneous flux
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Case 2: N Boundary Conditions
e General idea: Choose N boundary conditions and N basis functions
and solve the coefficients of the basis functions

— Boundary conditions can be formed by dividing the boundary into NV
parts:

0 s,
D /Sz a—nqb(x,y)dS = JoL

where S; C 9V is some part of the boundary.

— Normal derivative of the homogeneous flux doesn’t need to be
forced to a constant value on any part of the boundary
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Method to be implemented in Serpent
e 8 boundary conditions and 8 basis functions

e Basis functions:
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e Boundary conditions:
— [¢ Jhom(r) dS = Jxet,s for each boundary surface

— Ji Jhom(T) dS = Jnet,r for each corner
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Examples

e The Benchmark for Evaluation and Validation of Reactor Simulations
(BEAVRS)

IIT | IIT | IIT | IIT | IIT | III | IIT | IIT | III

III | IIT | IIT | I I I I I 1 I | III | IIT | III

1 IIT | III IIT | III

2 IIT | IIT | II II | III | III
. 3 II1 | II . . . II | III
e Example 1: Red
JOOD DEOD 0 O OO Do
(In the mlddle) 5 IIT | II I 111
6 IIT I I 111
° Example 2: Bluew. :[u: 1| m
. IIT 1 1 111
6 absorber pins
IIT I I 111
. 10 | III I I 111
e Example 3:
11 | III 1 16 12 16 II | III
Reflector | SODD DED OED OOC
13 IIT | II 16 II | III
14 IIT | III IIT | III

15 111 111

IOT | IIT | III | II I I I I i I | III | IIT | IIT

IIT | III | IIT | III | IIT | IIT | III | IIT | III
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2.5 assembly widths of surroundings.

Fast heterogeneous flux Fast homogeneous flux
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Top: surroundings included. Bottom: reflective boundary.

Fast heterogeneous flux Thermal heterogeneous flux
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ADFs for Example 1

e 2.5 assembly widths of surroundings

Fast 1.0017 1.0030 1.0030 1.0007
Thermal | 0.9916 0.9869 0.9936 0.9949

e Reflective boundary conditions

Fast 0.9973 0.9970 0.9971 0.9977
Thermal | 0.9968 0.9980 0.9970 0.9970
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Fast homogeneous flux

Thermal homogeneous flux
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Example 3
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Numerical solution of homogeneous flux (1)

Starting point: Homogenized constants and boundary conditions

e Form matrix M

M= D! (Et—is— ! F)
k'eff

e Compute square root of M
— Explicit formulas for small matrices

— lterative methods for larger matrices

Compute basis functions
— Matrix exponential

— Matrices are small and well-behaved

e Form equations corresponding to boundary conditions

— Requires numerical integration
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Numerical solution of homogeneous flux (2)

e Solve coefficients of the basis functions

— Requires a linear solver

e Numerical building blocks:
— Matrix square root algorithm
— Matrix exponential algorithm
— Numerical integration method
— Linear solver
e After implementing these numerical methods, it is easy to refine the
method by changing the boundary conditions and/or basis functions.

Also, solution method can be extended to more complex geometries
and 3D.
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