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Explicit Temperature Treatment Method
— Background

• Multi-physics applications of MC require detailed description of
temperatures.

• When using conventional methods, the cross sections have to be
stored in the computer memory separately for each nuclide and
temperature.
→ Problem

• Solution: on-the-fly temperature treatment techniques [1].

[1] G. Yesilyurt, W. R. Martin and F. B. Brown, “On-the-fly Doppler Broadening for Monte Carlo Codes,” Proc. M&C 2009, Saratoga Springs, New York,

May 3–7 (2009).



Explicit Temperature Treatment Method
— Background

• A new stochastic method for taking the thermal motion of target nuclei
into account.

– Introduced in NSE paper [2]

– First practical results presented in PHYSOR 2012, Knoxville [3].

• Based on sampling the thermal motion of targets at collision sites and
using 0 K cross sections in target-at-rest frame.

“There are no effective cross sections, only cross sections at 0 K and
thermal motion of nuclei”

[2] T. Viitanen and J. Leppänen, “Explicit Treatment of Thermal Motion in Continous-energy Monte Carlo Tracking Routines,” Nuc. Sci. Eng., 171,

165–173, (2012).

[3] T. Viitanen and J. Leppänen, “Explicit Temperature Treatment in Monte Carlo Neutron Tracking Routines – First Results.” In Proc. PHYSOR-2012.

Knoxville, TN, 15-20 April, 2012.



Explicit Temperature Treatment Method
— Tracking scheme

1. Sample path length l based on a majorant cross section Σmaj(E)

→ New collision point candidate xi+1 = xi + l

2. Sample target nucleus n: Pn =
Σmaj,n(E)
Σmaj(E) =

Σmaj,n(E)∑
n
Σmaj,n(E) .

3. Sample target velocity from a Maxwellian-based distribution with
T = T (xi+1)

→ Target-at-rest energy E′

4. Rejection sampling with criterion ξ <
gn(E,T )Σtot,0 K,n(E

′)
Σmaj,n(E)

• If the sample is rejected, return to 1.

• If the sample is accepted, sample reaction using E′ and zero-Kelvin
cross sections. Continue accordingly.



Explicit Temperature Treatment Method
— Calculating the Majorant

• The majorant for nuclide n is defined as

Σmaj(E) = gn(E, T ) max
E′∈[E−Et, E+Et]

Σtot, 0K(E
′) , (1)

where normalization factor gn(E, T ) accounts for the increase in
potential scattering at low energies.

• Cut-off Et < 16kT/An is utilized for the kinetic energy of the target
nucleus Et [4, 5].

• In case the temperature within a material is inhomogeneous, a
maximum temperature T = Tmax is used when generating the
majorant.

[4] D. E. Cullen, “Program SIGMA1 (version 79-1): Doppler broaden evaluated cross sections in the evaluated nuclear data file/version B (ENDF/B)
format,” UCRL-50400 Part B., Lawrence Livermore National Laboratory (1979).

[5] B. Becker, R. Dagan and G. Lohnert, “Proof and implementation of the stochastic formula for ideal gas, energy dependent scattering kernel,” Ann.
Nucl. Energy, 36, pp. 470–474 (2009).
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Explicit Temperature Treatment Method
— Sampling the target velocity

• Target velocity Vt is sampled from f(Vt, µ) =
v′

2vfMB(Vt) where

fMB(Vt) =
4√
π
γ3V 2

t e
−γ2V 2

t is the Maxwell-Boltzmann distribution.

• The same distribution and, hence, the same sampling procedure as in
the standard free gas treatment [6].

[6] MCNP X-5 Monte Carlo Team, “MCNP — a General Monte Carlo N-Particle Transport Code,” Version 5, LA-UR-03-1987, Los Alamos National

Laboratory (2003).



Explicit Temperature Treatment Method
— Properties

• Only 0 Kelvin cross sections are needed during tracking
→ Memory consumption does not depend on the number of
temperatures in the problem geometry.

• Inhomogeneous temperatures are allowed within a material zone, i.e.
temperature distribution can be modelled with an arbitrary function
T = T (x)

• The sampled target velocities can be recycled when calculating
kinematics of scattering events.

– Inherently correct secondary particle distributions!

• Track-length estimators cannot be used for reaction rates.



Preliminary implementation in Serpent 2

• Multi-group majorant cross sections with 40 000 equi-lethargy energy
groups.

– Fast calculation of Σmaj

– Reduced memory consumption per nuclide compared to
continous-energy implementation.

– Reduced sampling efficiency during transport.

ξ <
gn(E,T )Σtot,0 K,n(E

′)
Σmaj,n(E)

• Reaction rate estimators not yet implemented. Hence, only flux
spectrum and keff can be calculated.



A few words about the efficiency of the method
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Usage of the on-the-fly method

• In Serpent 2, on-the-fly temperature treatment can be activated with
input card

set dop 2

• When activated, the explicit temperature treatment is used for all
materials with a tmp card.

– Cross sections for these materials must be at 0 K.

• IMPORTANT! The explicit treatment cannot be used for materials
containing bound scatterers.

mat fuel -10.4 tmp 900

92235.00c -0.03173

92238.00c -0.84977

8016.00c -0.11850



HTGR test case

• A HTGR system consisting of 6 compacts in a graphite matrix
surrounding a coolant channel full of helium. Fuel is at 1800 K, other
solid materials are at 1200 K and helium is at 900 K temperature.



Results — HTGR system
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Serpent 1.1.16 with DBRC + extended FGT
Explicit temperature treatment
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Serpent 1.1.16 without DBRC
Explicit temperature treatment

Figure 1: Left: Neutron flux normalized to 1E15 total flux. Right: Differ-
ence to a benchmark calculated using Serpent 1.1.16 with NJOY-broadened
cross sections and DBRC.



Results — Performance

Table 1: Total CPU times of the simulations.
HTGR PWR pin-cell

Case Time (s) Ratio Case Time (s) Ratio

Serpent 2, explicit 3497.0 4.20 Serpent 2, explicit 1585.4 2.28

Serpent 2, optimiz. mode 2 830.9 1.00 Serpent 2, optimiz. mode 2 696.3 1.00

Serpent 1.1.16+DBRC+FGT 911.7 1.10 Serpent 1.1.16+DBRC 463.0 0.66

Serpent 1.1.16 845.6 1.02 Serpent 1.1.16 425.9 0.61



Future Prospects

• Extension of the method to the unresolved region and bound-atom
scattering.

• Optimization of the implementation.

• Implementation of reaction rate estimators.

• Burnup calculation in otf mode.

• Application: a built-in thermal feedback calculator for pin geometries
(M.Sc. project of V.Valtavirta, Aalto University).



Summary and conclusions

• A new stochastic method for taking the thermal motion of target nuclei
into account has been developed and preliminarily implemented in
Serpent 2.

• With the new method, temperatures can be modelled with an arbitrary
function T (x), independent of material boundaries.

• Transport with the current implementation requires about 2–4 times
more CPU time than with traditional methods, depending on the case.

• Extension of the method to bound-atom scattering and unresolved
energy range requires further work.
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