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Parallelisation 

• In general two options: 

•   OpenMP 

 both applicable to C/C++ and Fortran 

• PVM (Parallel Virtual Machine) is outdated 

•   MPI (Message Passing Interface) 
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MPI 

 identical programs start on all selected 
computer cores 

 provides a set of routines for 
communication between processors/cores 

 MPI package available from ANL as MPICH2 

 mpiexec  –n  8   executable   [arguments] 

 provides a more modern implementation 
 alternative: Open MPI 

 memory limitations for large problems 
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OpenMP (threading) 

 easier to implement 

 uses shared memory 

 can be used in combination with MPI 

 uses compiler directives like:  #pragma omp … 

 activated by compiler option -openmp 

 can be used on one computer node only 

 executes part of program on multiple threads 
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SERPENT 

•  SERPENT2 allows both MPI and openmp 

•  however,  
 efficiency depends on your computer system 

• mpiexec  –n 4  sss2  –omp 8  input_file 

 uses in this case:  4 x 8 processor cores 

• SERPENT1 used MPI only 
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Compiling SERPENT 

•  SERPENT will be compiled and built 
 with make command 

•  make  –j  <n> 

• Advice from MCNP: 

You may take  n  twice the number of 
available cores 

•  make has an option for parallel compilation: 

  with n number of processor/cores to be used 
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Computer nodes, 
 processors and cores 

Quad core processor 

Core 0 Core 1 Core 3 Core 2 
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Computer nodes, 
 processors and cores 

Computer with 8 cores 

  
Quad core 

  
Quad core 
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Computer nodes, 
 processors and cores 

Computer cluster with 4 nodes x 8 cores 
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Test problem 

 SERPENT2 calculations  for a BWR pin cell  

 varying number of MPI cores and threads 

 with 10,000 histories/batch and 500 batches  

 determine speedup  

 using TRANSPORT_CYCLE_TIME only  
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Results with OpenMP 

Speedup on a node with 8 cores 
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Using more threads than cores 
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Speedup on a node with 32 cores 
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Speedup on a node with 48 cores 
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Combinations of MPI and threads 
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Combinations of MPI and threads 

• If others have access to the node: 

 Claim total number of cores needed 
via scheduling parameters 

 Specify number of MPI cores with mpiexec 

 Specify number of threads with -omp 
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Using more than one node 

• If you have,  e.g.,  4 nodes available, 
each with 8 cores 

• specify at maximum 8 threads 

• So, you may specify 4 MPI 
tasks with 8 threads each 

• However, scheduler may assign 4 MPI 
tasks to cores on the same node! 

 Won’t give expected speedup 
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More than one node with MPI only 

 Nodes with 32 cores 
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Using more than one node 

• you always get all cores on a node 

• Hence, tell PBS scheduler to 
use 4 nodes with 1 core each: 
 #PBS -l nodes=4:ppn=1 

 uses 8 threads on each node 

• On (specific) supercomputer: 

• Whether this works efficient, depends on 
internode communication  Infiniband 

 in job file:  mpiexec –n 4  sss2 –omp 8 … 
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Conclusions 

 SERPENT2 provides flexible options 
    for parallel execution 

 On a single computer node: 

 Parallel execution  with very large numbers 
    of cores will not be efficient 

 openMP can well be used  
 don’t use more threads than cores available  
 use combination of MPI and openMP for 

larger number of cores  

 Take care of scheduling parameters 
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