
C D

 N

1 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Experience with the parallel execution of
SERPENT2

J. Eduard Hoogenboom

Delft Nuclear Consultancy

C D

 N

2 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Parallelisation

• In general two options:

• OpenMP

 both applicable to C/C++ and Fortran

• PVM (Parallel Virtual Machine) is outdated

• MPI (Message Passing Interface)

C D

 N

3 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

MPI

 identical programs start on all selected
computer cores

 provides a set of routines for
communication between processors/cores

 MPI package available from ANL as MPICH2

 mpiexec –n 8 executable [arguments]

 provides a more modern implementation
 alternative: Open MPI

 memory limitations for large problems

C D

 N

4 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

OpenMP (threading)

 easier to implement

 uses shared memory

 can be used in combination with MPI

 uses compiler directives like: #pragma omp …

 activated by compiler option -openmp

 can be used on one computer node only

 executes part of program on multiple threads

C D

 N

5 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

SERPENT

• SERPENT2 allows both MPI and openmp

• however,
 efficiency depends on your computer system

• mpiexec –n 4 sss2 –omp 8 input_file

 uses in this case: 4 x 8 processor cores

• SERPENT1 used MPI only

C D

 N

6 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Compiling SERPENT

• SERPENT will be compiled and built
 with make command

• make –j <n>

• Advice from MCNP:

You may take n twice the number of
available cores

• make has an option for parallel compilation:

 with n number of processor/cores to be used

C D

 N

7 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Computer nodes,
 processors and cores

Quad core processor

Core 0 Core 1 Core 3 Core 2

C D

 N

8 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Computer nodes,
 processors and cores

Computer with 8 cores

Quad core

Quad core

C D

 N

9 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Computer nodes,
 processors and cores

Computer cluster with 4 nodes x 8 cores

Quad

core

 Quad

core

Quad

core

 Quad

core

Quad

core

 Quad

core

Quad

core

 Quad

core

node 0

node 1

node 2

node 3

C D

 N

10 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Test problem

 SERPENT2 calculations for a BWR pin cell

 varying number of MPI cores and threads

 with 10,000 histories/batch and 500 batches

 determine speedup

 using TRANSPORT_CYCLE_TIME only

1 core

n cores

T
SU

T

C D

 N

11 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Results with OpenMP

Speedup on a node with 8 cores

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

threads

Speedup factor

theor

actual

C D

 N

12 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Using more threads than cores

0

2

4

6

8

10

12

0 10 20 30 40 50

threads

Speedup factor

theor

actual

C D

 N

13 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Speedup on a node with 32 cores

0

5

10

15

20

25

30

0 10 20 30 40

threads

Speedup factor

theor

actual

C D

 N

14 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Speedup on a node with 48 cores

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50

threads

Speedup factor

theor

actual

C D

 N

15 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Combinations of MPI and threads

0

10

20

30

40

50

0 10 20 30 40 50

cores

Speedup factor

theor

mpi-1

mpi-2

mpi-3

mpi-4

mpi-8

mpi-16

mpi-24

mpi>=32

C D

 N

16 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Combinations of MPI and threads

• If others have access to the node:

 Claim total number of cores needed
via scheduling parameters

 Specify number of MPI cores with mpiexec

 Specify number of threads with -omp

C D

 N

17 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Using more than one node

• If you have, e.g., 4 nodes available,
each with 8 cores

• specify at maximum 8 threads

• So, you may specify 4 MPI
tasks with 8 threads each

• However, scheduler may assign 4 MPI
tasks to cores on the same node!

 Won’t give expected speedup

C D

 N

18 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

More than one node with MPI only

 Nodes with 32 cores

0

20

40

60

80

100

120

0 20 40 60 80 100 120

cores

Speedup factor

theor

actual

C D

 N

19 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Using more than one node

• you always get all cores on a node

• Hence, tell PBS scheduler to
use 4 nodes with 1 core each:
 #PBS -l nodes=4:ppn=1

 uses 8 threads on each node

• On (specific) supercomputer:

• Whether this works efficient, depends on
internode communication Infiniband

 in job file: mpiexec –n 4 sss2 –omp 8 …

C D

 N

20 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Conclusions

 SERPENT2 provides flexible options
 for parallel execution

 On a single computer node:

 Parallel execution with very large numbers
 of cores will not be efficient

 openMP can well be used
 don’t use more threads than cores available
 use combination of MPI and openMP for

larger number of cores

 Take care of scheduling parameters

C D

 N

21 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Acknowledgement

Research supported by the
European Union project HPMC

High-Performance Monte Carlo

