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R&D activities at KTH

) Transmutation of minor actinides in lead fast reactors

() Nitride fuel development

() Radiation damage physics

() ELECTRA: European Lead Cooled Training Reactor




Application of SERPENT

() Extensive use of SERPENT for calculation of

O reactivity coefficients in fast reactors

()Forusein

) simulation of transients using SAS4A/SASSYS




Impact of americium on Doppler feedback
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) Simulation of large SFRs with oxide,
nitride and metal alloy fuels made
with SERPENT & SAS4A
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) Oxide fuels are more sensitive to

20 americium concentration.

10 & Zhang, Wallenius & Fokau: Annals
” Nuclear Energy 37,2010, 629
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931 Transient performance of lead fast reactors
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) ELSY model built in SERPENT

) Impact of Am studied in oxide and
nitride cores.

) Larger sensitivity to Am loading
than for SFRs (larger positive
coolant temperature coefficient!

) Nitride fuel perform better than
oxides (larger margin to failure)

) Tesinsky, Zhang & Wallenius:
Annals of Nuclear Energy 47, 2012,
104




ELECTRA:
European Lead Cooled Training Reactor

) Alow power fast reactor - 0.5 MWy,
O Inert matrix nitride fuel - (Pu,Zr)N

() Heat removal by100% natural convection of liquid
lead

© Wallenius et al, Nuclear Tecnology 177 (2012) 303
() Atestbed for LFR technology
() May be used for research on reactor dynamics

) Education for nuclear engineering students




ELECTRA: choice of fuel

Thermal conductivity [W/m/k]
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+ High thermal conductivity - 15 times larger
than (Pu,Zr,Y)0;

(Pug_4,Zro )N
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+ Low fueltemperature - low swelling & low
gas release

Swelling [%]
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+ Good compatibility with lead - metal alloys
dissolve in LBE
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— High reactivity loss - reactivity
compensation required
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231 ELECTRA: core design & control drums

ST

o) 397 fuel pins, Dciaa = 12.6 mMm
&) (Puo.4,Zro.6)N fuel. ~ 70 kg Pu from spent UOX
) Active core dimensions:~ 30x30cm

o) Shutdown and reactivity compensation using
12 rotating "drums”’ with 90° B4C sectors.
Suvdantsetseqg, Wallenius & Bortot, Nuclear
Engineering & Design 252 (2012) 209.

10B,C/steel drum ) Modelling challenge: Rotation of drums.

) Serpent annular sector macrobody good tool!
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231  Transient performance

ST

) Single control drum rotation at BOL inserts 1.7
dollars of reactivity.

) Zero Doppler feedback due to hard spectrum

) Coolant temperature coefficient: - 0.4 pcm/K

) Fuel axial expansion coefficient: -0.4 pcm/K
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) Cladding creep rupture can be avoided for 1.7
dollar insertion, even for large insertion rate.
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Modelling challenges

Overshoot
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neutron generation time!
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) Inlead reflected fast reactors,
neutrons can survive for very long
times before returning to the reactor.

) kesfor the bare ELECTRA core =0.7!

) Serpent estimate of neutron removal
time O in ELECTRA is strongly
dependent of lead reflector radius!

) Escape contributes significantly!

) Which value of A = 6/k should enter
the point kinetics equation???




Neutron generation time

Fission rate [1/us]

0 ) Neutron generation time # neutron removal time!

* ) MCNP provides estimate of neutron removal by

131 ot i fission.

) MCNP also provides possibility to simulate direct
(forward) growth of neutron flux (and thus fission
power), using time cut-off!

) Alpha-eigenvalue obtained by direct simulation
inan LFR pin cellis significantly smaller than
fission generation time. Why?

) Physics behind this phenomenon may be studied
by MCNP. Implementation of time-cutoff in
Serpent highly desired feature!



