Porting Monte Carlo
Algorithms to the GPU

Ryan Bergmann
UC Berkeley
Serpent Users Group Meeting
9/20/2012
Madrid, Spain 1

Outline

Introduction to GPUs

— Why they are interesting

— How they operate

— Pros and cons

Problems with MC algorithms
— Thread divergence

Solutions to these problems

— Reference remapping

— Changing task parallel to data parallel

— MC applications where GPUs excel
Preliminary 2D mono-energetic results

Future Plans

Introduction To GPUs

Why Are GPUs Interesting?

[General Purpose] Graphics Processing Cards
[GP]GPUs

GPUs are being used across all scientific fields
Major company endorsements (NVIDIA, Adobe...)
— Guaranteed future development

Top supercomputers use GPUs to gain efficiency
— Issue blocking exascale computing is POWER

All architectures are getting *wider*, not faster

— Porting codes to heterogeneous programming
structures will make them much more future-proof

GPU-like programming models are the future!

Differences

 GPUs are “manycore”
— Optimized for total throughput
— Individual core performance de-emphasized
— “flock of chickens” or assembly line workers

 CPUs are “multicore”
— Optimized for executing a small number of threads
— Geared toward individual performance
— “yolk of oxen” or master craftsmen

SN SN te(te)re)te
) N rx‘) > &) x\>
RPN E@” 4 BPNE@” 4 + - +
TNA A TN A
“ 4 "4 rellnelre) e
> ,L? ,L,>
£ Ny £ Ny - -
N = —)
\/ -J |) B &) ?" = ‘ﬂ" W=
INHYE)y e ;‘f}@ ;‘f}@
s I3} . .
Multicore Manycore

Taken from Bryan Cantanzaro’s CS-267 slides, Feb 2011.

GPU Architecture

EEEEEENE

) i

Graphic taken from Wen-mei Hwu’s UCB CITRIS presentation, Jan 24-25, 2011.

CPU/GPU Comparison

6 cores, 2 issue, 16 cores, 2 issue, 16
Processing Elements 4 way SIMD way SIMD
@3.46 GHz @1.54 GHz
6 cores, 2 threads, 4 16 cores, 48 SIMD -
Resident Strands/ way SIMD: vectors, 32 way We stmere- E P (3 2N m)
Threads (max) SIMD:
48 strands 24576 threads]
SP GFLOP/s 166 1577
Memory Bandwidth 32 GB/s 192 GB/s
Register File 6 kB (?) 2 MB
Local Store/L1 Cache 192 kB 1024 kB
L2 Cache 1536 kB 0.75 MB
L3 Cache 12 MB -

LY

Fermi (4onm)

| cPunode GPU node

Taken from Bryan Cantanzaro’s CS-267 slides, Feb 2011.

Processor specs 4x Opteron 12-core 2.1 Ghz 3x NVIDIA TESLA C2070
Price $10,000 $13,000
Max. TeraFLOPs 0.4 3.1 (N.l. 16 CPU cores)

Min. Price/GigaFLOP $25 $4.19

SIMT

SIMT = Single Instruction Multiple Thread

“Data Parallelism” — the same operations are
conducted on different pieces of data

Takes advantage of regularity in instruction
sets

Easy to see how this would be advantageous
In array operations

— Matrix operations

— Iterative methods

Threads

 SIMT execution is abstracted by threads

— Each thread in a “warp” executes the same
instruction set on different data

— Warps are 32 threads wide

— Strict SIMT *not* enforced, divergence causes 0/ 1]2/3/4/516]7

serialization
 Thread block execution is scheduled by
hardware
. float a = input[threadIdx];

— Each thread must be completely independent float b = func(a);
Of any Others ?utput[threadldx] = b;

— Threads must be allowed to execute in any

order

 Each thread and thread block has a unique ID
which can be used to access different pieces
of data.

— tid = ThreadID + BlockID * BlockDim

— data(tid]

Graphic taken from Wen-mei Hwu’s UCB CITRIS presentation, Jan 24-25, 2011.

GPU Strengths & Weaknesses

e Strengths
— Very high computational capacity
— High memory bandwidth (compared to CPU)

— Much cheaper and energy efficient per FLOP (1/10 & 1/20
respectively)

* Weaknesses
— Reliance on SIMT means control divergence is a problem
— Only very high performance on data-parallel tasks

— Kernels must be lightweight for high performance (small
caches)

— Limited DRAM (currently max 6GB per card)

* New drivers allow peer-to-peer transfers between cards over PCle
bus, eliminating CPU overhead (basically GPU RDMA), but this is
slower than local memory (of course)

CUDA

 Extended C — additional data types, function
definitions, and operators

* Heterogeneous
— CPU and GPU parts
— CPU/GPU parts can execute concurrently (pipelining)

 GPU kernels can be callable from host & device,
or from device only.

— Kernels are pieces of code that run on many different
threads

— Calling them “kernels” reflect the lightweight and
repeated nature of the code

CUDA

Serial Code (host)

Parallel Kernel (device)
KernelA<<< nBIk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)
KernelB<<< nBIk, nTid >>>(args);

AD\ A

({4

©Wen-mei W. Hwu and David Kirk/NVIDIA,
Berkeley, January 24-25, 2011

12

PROBLEMS WITH MC ALGORITHMS

Thread Divergence

e MC method involves lots of ‘if’ statements based on
random numbers

* Creates many areas where thread control flow can
diverge

* Highly divergent problems can cause severe under
utilization of GPU resources
— serialization of divergent threads

— warps to remain idle while waiting for longest thread to
complete

good bad

Graphic taken from Wen-mei Hwu’s UCB
CITRIS presentation, Jan 24-25, 2011.

14

Hardware Limitations

* Current cards have a maximum of 6GB of global
memory

— Fitting necessary cross section data in GPU memory
could be a problem

* Kernels can only be launched from CPU

— No “master thread” on GPU, so jobs cannot “make
work” for themselves depending on problem progress

SOLUTIONS

Data Remapping

* Must keep in-warp threads in same control
branch

— remap data
* Expensive
* Might not be necessary

— remap references to the data (pointers)
* Uses the form: new thread id = remap[thread id]
* Allows threads to access only “active” particle data

* Can be extended from “active” to “performing reaction
X”

Reference Remapping

DATA (Usually reference by DATA[tid])

1 2 3 4 5 6
done active active done active done ..toN

REMAP

2 3 5 7 11 8 _toN

A A A A A A
THREAD

1 2 3 4 5 6

. TO N_Give

Task to Data Parallelism

c 1 K
Conventional Algorithm , f
history event sequence
1 EfcIbBIbBIcIBE ™ s
2 sIbfIctfcibIBEBK
3 s THTE X ™™
¢ EIb K _
5 sfcfcifcibibfcibfbk =
Event-Based Algorithm
history event sequence
1 sf~cfb~fb=-f~-~~-=-cfbk
2 sfb~f~cf~cfbfbf~~Dbk
3 Bfb-fb~fb~-=~=~==~n~« e
4 BEID= ==« oo concoecoea- k
5 s f~cf~-~-cf~-~-cfbfbfcfb-fbk

vector event s equence
sfbcfbcftbcfEftbIfbfcibkIfblik

Brown, F. B, Sutton, T. M., and Knolls Atomic Power Laboratory,
Monte Carlo Fundamentals. Knolls Atomic Power Laboratory, Schenectady, N.Y, 1996.

Task to Data Parallelism

Break history loop into individual task sections
Transport kernel does one step of transport

Purge kernel updates a remapping vector
— First n entries are all “active” particles
— Last N,_,-n entries are absorbed particles

Next iteration in history loop only transports

“active” n particles, effectively purging all
completed histories from all thread blocks

Turns “a particle per thread” into “N particles
shared by N threads”, ie **DATA PARALLEL**

PRELIMINARY
2D MONO-ENERGETIC RESULTS

Program Details

Written in CUDA C
Data layout AOS (array of structures) for better coherent data access
Break history loop into “transport” and “purge” sections

— Transport kernel does one step of transport

— Purge kernel updates a remapping vector
* First n entries are all “active” particles
* Last N, ,-n entries are absorbed particles

Next iteration in history loop only transports “active” n particles,
effectively purging all completed histories from all thread blocks

Turns “a particle per thread” into “N particles shared by N threads”
Uses libraries when available

— More flexible, better performance than handwritten routines

— CuRand for random number generation

— CUDPP for sorts and scans

— OptiX for ray tracing and geometry representation (future work)

Problem Geometry

2D fixed geometry

Mono-energetic o3|
Only isotropic scatter Ll
and capture _
All neutrons uniformly :Ej
bornincell 1 Ez
Cell O extends to ol
infinity ’

=06 £ =04 =06 =04
CELL 4 CELL3
£ =01 £ =04
CELLD
£ =00 Z_=20 =06 =04
CELL1 CELL 2
0.1 02 03 04 05 06 07 08 08
¥ (cm)

23

Serial CPU / Naive GPU Algorithm

Initialize
particle

Intersect boundary?

. Determine location
—> Transport |—> If yes, place particle [’

update parameters

there, set resample bit

YES Resample?

Determine reaction,
update tally

YES Absorbed?

Purging GPU algorithm

Initialize dataset

I
I Seed/advance random :
1 number databank 1

I

Intersect boundary?
—> If yes, place particle >
' there, set ‘resample’ bit

Determine location,
update parameters

N particles

I
: Determine reaction,
I update tally, set :<
I

I I

[
! Update remap vector, |

—1 Update N to number !
: of active particles 1 **Dashed lines indicate an independent kernel launch**

CPU Absorption Points

Visua

| Results

LAY

Kadr X

*d

TN

£ 2

GPU Absorption Points
BIPRNE AT I YR UM 22> JRITY
AN TS «Z‘w{m".
L +

X 3

A\

+*
ke 5% ¢

LM SEN
4

-

N R
0.2 03 04 05 06 07 08 08 1
¥ fem)
GPU Absorption Paints
104)& ’ $ MRRATN
T
26

Speedup over single CPU

1

1
Naive GPU
— — = Purging GPU

20

—_
W

Speedupowver CPU

—_
o

0 i i i i i i i i
0 1 2 3 4 5 B 7 8 9
Particle Histories x10°

Profiler Stats 1

Gpu Time Summary Plot

GPU Time (Total)
0.00% 16.67% 33.33% 50.00% 66.67% 83.33% 100.00%

run_hist (1)
memcpyDtoH (3)
memset32_aligned1D (1)
memcpyHtoD (3)

I 1 1 1 1 1 1
0.00% 16.67% 33.33% 50.00% 66.67% 83.33% 100.00%

Gpu Time Summary Plot

GPU Time (Total)
0.00% 557% 11.13% 16.70% 22.27% 27.83% 33.40% 38.97%

rxn (57)

transport (57)
memcpyHtoD (18)
maskit (57)
compactData (57)
vectorAddUniform4 (57)
scan4-0 (57)
memcpyDtoD (56)
scan4-1(57)
memcpyDtoH (57)
memset32_alignedlD (2)

I I I 1 1 I I I
0.00% 5.57% 11.13% 16.70% 22.27% 27.83% 33.40% 38.97%
28

% Confrol How Divergence

100

90

80

70

60

>0

40

30

20

10

Profiler Stats 2

T T T T T T
: : Purging lteration value

L PR EREREE: TRETREEETRRE RTINS E -—--Avaage a
: : : | === Naive

..____.__,,_._____.._,w___..__,__.__._..____.__._“___.____”__ -

i |]
0 S0 100 150

lkerations

; , :
200 250 300 350

29

Profiler Stats

X-axis Is time

Pink sections are for methods
Blue sections are API processes

Active warps/active cycle

— Naive code:

— Purging:

9.93 for the single kernel call

26 for reaction kernel

15 for transport kernel
30 for purge/remap

Conclusions

Remapping a SUCCESS for reducing divergence

GPU code is faster than CPU
— Speedup factors increase with histories, but have decreasing marginal gain

— Serpent 20x faster than MCNP, GPU ~25x faster than CPU, so core calculations
on the order of 500x faster than MCNP possible if use serpent methodology

on GPU???
Purging code slower than naive

— Three independent kernel launches per iteration, APl overhead gets expensive
with many iterations, API calls take 60% of total time

— Have to copy active particle number back to host every iteration

— These overheads will be removed in next generation hardware
* Purging approach will most likely faster than naive
* Shows promise for accelerating reactor simulations, up to 25x speedup over CPU

Initial testing with ENDFB-VII libraries show that data can fit on-card

— GPUs use shared memory, only need one copy of cross sections for each
material

— Entire library is 1.13GB at a single temperature

— Threads may have to do on-the-fly cross section arithmetic to keep memory
utilization down (i.e. no cross section pre-processing)

Further Work

* Use NVIDIA OpitiX instead of handwritten intersection finder

Low level parallel 3D ray tracing framework for CUDA

Develop routines to translate combinatorial geometry to OptiX
representations

Can import CAD drawings

Can compare to real world problems and produce much more relevant
speedup comparisons to MCNP, Serpent, etc.

» Parallel cross section processing/access routines
— On-the-fly arithmetic and access routines
— Unified grid for fast lookup if memory is available
— Otherwise fast lookup algorithm

* Binary/ternary search

* Interpolation search
* Compute inversion function since energy data is monotonic
— lookup will be done in (small) constant time!

* Serpent Routine????

Thank You!

Training the Next Generation

This material is based upon work supported by the Department of Energy National
Nuclear Security Administration under Award Number(s) DE-NAO0O00979

33

Disclaimer

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or limited, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise does not necessarily
constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The views and
opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

