
C D

 N

1 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Experience with the parallel execution of
SERPENT2

J. Eduard Hoogenboom

Delft Nuclear Consultancy

C D

 N

2 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Parallelisation

• In general two options:

• OpenMP

 both applicable to C/C++ and Fortran

• PVM (Parallel Virtual Machine) is outdated

• MPI (Message Passing Interface)

C D

 N

3 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

MPI

 identical programs start on all selected
computer cores

 provides a set of routines for
communication between processors/cores

 MPI package available from ANL as MPICH2

 mpiexec –n 8 executable [arguments]

 provides a more modern implementation
 alternative: Open MPI

 memory limitations for large problems

C D

 N

4 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

OpenMP (threading)

 easier to implement

 uses shared memory

 can be used in combination with MPI

 uses compiler directives like: #pragma omp …

 activated by compiler option -openmp

 can be used on one computer node only

 executes part of program on multiple threads

C D

 N

5 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

SERPENT

• SERPENT2 allows both MPI and openmp

• however,
 efficiency depends on your computer system

• mpiexec –n 4 sss2 –omp 8 input_file

 uses in this case: 4 x 8 processor cores

• SERPENT1 used MPI only

C D

 N

6 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Compiling SERPENT

• SERPENT will be compiled and built
 with make command

• make –j <n>

• Advice from MCNP:

You may take n twice the number of
available cores

• make has an option for parallel compilation:

 with n number of processor/cores to be used

C D

 N

7 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Computer nodes,
 processors and cores

Quad core processor

Core 0 Core 1 Core 3 Core 2

C D

 N

8 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Computer nodes,
 processors and cores

Computer with 8 cores

Quad core

Quad core

C D

 N

9 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Computer nodes,
 processors and cores

Computer cluster with 4 nodes x 8 cores

Quad

core

 Quad

core

Quad

core

 Quad

core

Quad

core

 Quad

core

Quad

core

 Quad

core

node 0

node 1

node 2

node 3

C D

 N

10 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Test problem

 SERPENT2 calculations for a BWR pin cell

 varying number of MPI cores and threads

 with 10,000 histories/batch and 500 batches

 determine speedup

 using TRANSPORT_CYCLE_TIME only

1 core

n cores

T
SU

T


C D

 N

11 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Results with OpenMP

Speedup on a node with 8 cores

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

threads

Speedup factor

theor

actual

C D

 N

12 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Using more threads than cores

0

2

4

6

8

10

12

0 10 20 30 40 50

threads

Speedup factor

theor

actual

C D

 N

13 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Speedup on a node with 32 cores

0

5

10

15

20

25

30

0 10 20 30 40

threads

Speedup factor

theor

actual

C D

 N

14 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Speedup on a node with 48 cores

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50

threads

Speedup factor

theor

actual

C D

 N

15 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Combinations of MPI and threads

0

10

20

30

40

50

0 10 20 30 40 50

cores

Speedup factor

theor

mpi-1

mpi-2

mpi-3

mpi-4

mpi-8

mpi-16

mpi-24

mpi>=32

C D

 N

16 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Combinations of MPI and threads

• If others have access to the node:

 Claim total number of cores needed
via scheduling parameters

 Specify number of MPI cores with mpiexec

 Specify number of threads with -omp

C D

 N

17 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Using more than one node

• If you have, e.g., 4 nodes available,
each with 8 cores

• specify at maximum 8 threads

• So, you may specify 4 MPI
tasks with 8 threads each

• However, scheduler may assign 4 MPI
tasks to cores on the same node!

 Won’t give expected speedup

C D

 N

18 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

More than one node with MPI only

 Nodes with 32 cores

0

20

40

60

80

100

120

0 20 40 60 80 100 120

cores

Speedup factor

theor

actual

C D

 N

19 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Using more than one node

• you always get all cores on a node

• Hence, tell PBS scheduler to
use 4 nodes with 1 core each:
 #PBS -l nodes=4:ppn=1

 uses 8 threads on each node

• On (specific) supercomputer:

• Whether this works efficient, depends on
internode communication  Infiniband

 in job file: mpiexec –n 4 sss2 –omp 8 …

C D

 N

20 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Conclusions

 SERPENT2 provides flexible options
 for parallel execution

 On a single computer node:

 Parallel execution with very large numbers
 of cores will not be efficient

 openMP can well be used
 don’t use more threads than cores available
 use combination of MPI and openMP for

larger number of cores

 Take care of scheduling parameters

C D

 N

21 2nd SERPENT Users’ Group Meeting, Madrid, September 19-21, 2012 Delft Nuclear Consultancy

Acknowledgement

Research supported by the
European Union project HPMC

High-Performance Monte Carlo

