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Burnup equations

• Form a system of ordinary differential equations:

dni

dt
= −(λi + σi)ni +

∑
j ̸=i

(γi σ
j
f ϕ+ λj→i + σj→iϕ)nj (1)

• Matrix form
n′ = An , n(0) = n0 , (2)

• Matrix exponential solution

n = eAtn0 (3)



Matrix exponential

• Definition

eAt =

∞∑
k=0

1

k!
(At)

k (4)

• Diagonalizable matrices

eAt = V eΛtV −1 , A = V ΛV −1 (5)

• There are various numerical algorithms but many of them are
computationally expensive and of dubious numerical quality [1]

[1] C. MOLER and C. VAN LOAN, Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later, SIAM Rev., 45 (2003).



Burnup matrix

• Non-diagonalizable

• contains both positive (off-diagonal) and negative (diagonal) elements

• Extreme cases encountered:

– Size ∼ 1700× 1700

– Norm
∥A∥ ∼ 1021

– Eigenvalues
|λ| ∈ [0, 1021]

– Timestep
t ∼ 101 . . . 106 s

⇒ Matrix exponential usually not computed for a full system!



Established matrix exponential methods

• Truncated Taylor series based approximation

• Scaling and squaring

eA = (eA/m)m , m = 2k (6)

• ORIGEN based on truncated Taylor series with scaling and squaring

– Short-lived nuclides treated separately!

• Padé approximation

– rational approximation near the origin

– MATLAB matrix exponential function expm based on Padé
approximation with scaling and squaring



Chebyshev Rational Approximation Method (CRAM)

• Burnup matrix eigenvalues confined to a region near the negative real
axis!

– Real parts of eigenvalues non-positive (stable system)

– Fraction of the eigenvalues have small imaginary parts (∼ 10−8 or
smaller)

• CRAM approximation of order k is is defined as the unique rational
function r̂k,k such that

sup
−∞<x≤0

|r̂k,k(−x)− ex| = inf
rk,k∈πk,k

{
sup

−∞<x≤0
|rk,k(−x)− ex|

}
. (7)

• It can be characterized as the best rational approximation on the
negative real axis



Accuracy of the CRAM approximation of order 14 in the
complex plane
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Implementation (1)

• The rational approximation is computed using partial fraction form

– Scalar function

rk,k(x) =
pk(x)

qk(x)
= α0 + 2Re

k/2∑
j=1

αj

x− θj

 (8)

– Matrix function

n ≈ rk,k(At)n0 = α0n0 + 2Re

k/2∑
j=1

αj(At− θjI)
−1n0

 . (9)

⇒ Only solving a set of linear equations is required in addition to the
partial fraction coefficients

⇒ Computation of approximation of order k takes k/2 matrix inversions



Implementation (2)

• Matrix sparsity pattern can be exploited in the inversion

• Matrix inversion in Serpent: symbolic LU factorization and Gaussian
elimination on this factorization [3]

• Computational efficiency:

– Example: for a system with ∼ 1300 nuclides, CRAM of order 6 takes 0.06 s
and CRAM of order 16 takes 0.1 s

– The order of approximation can be adjusted to suit needs for accuracy and
speed
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[2]R. E. TARJAN, Graph Theory and Gaussian Elimination, Tech. Rep. CS-TR-75-526, Stanford University, Department of Computer Science,

Stanford, CA, USA (1975).



Implementation (3)

• Originally only approximation order 14 was implemented into Serpent

– Partial fraction coefficients taken from [3]

• These coefficients were later discovered to be inaccurate

• New sets of partial fraction coefficients have been computed for
approximation orders 6, 8, 10, 12, 14 and 16 [4]

⇒ These approximation orders are implemented in Super-Serpent

[3]E. Gallopoulos, and Y. Saad Efficient Solution of Parabolic Equations by Krylov Approximation Methods, SIAM J. Sci. Stat. Comput., 13, 5,

1236–1264 (1992).

[4] M. PUSA, Rational Approximations to the Matrix Exponential in Burnup Calculations, Nucl. Sci. Eng., 169, 2, 155–167 (2011)



Numerical Results (1)

• PWR pin cell lattice irradiated to 25 MWd/kgU burnup [5]

• A ∈ R1532×1532, ∥A∥ ∼ 1021, t ∼ 106 s
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[5] M. PUSA and J. LEPPÄNEN, Computing the Matrix Exponential in Burnup Calculations, Nucl. Sci. Eng., 164, 2, 140–150 (2010)



Numerical Results (2)

• Relative error of CRAM approximation of order 14 for the same test
case [4]
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[4] M. PUSA, Rational Approximations to the Matrix Exponential in Burnup Calculations, Nucl. Sci. Eng., 169, 2, 155–167 (2011)



Numerical Results (3)

• Convergence results for the same test case [4]

Approximation Mean error Maximum error Mean Maximum

order relative error relative error

2 3.3901× 10−7 3.3110× 10−4 8.3015× 10−2 1.9561× 100

4 4.0252× 10−9 3.8736× 10−6 5.6140× 10−3 6.3820× 10−1

6 4.7339× 10−11 4.5163× 10−8 2.2452× 10−4 3.8184× 10−2

8 5.5808× 10−13 5.2486× 10−10 7.1664× 10−6 1.5762× 10−3

10 6.5685× 10−15 6.0944× 10−12 1.9529× 10−7 5.1640× 10−5

12 7.6474× 10−17 6.9690× 10−14 4.7280× 10−9 1.4323× 10−6

14 9.5452× 10−19 9.5339× 10−16 1.0384× 10−10 3.4990× 10−8

16 2.0748× 10−19 1.6377× 10−16 2.1196× 10−12 7.7286× 10−10

[4] M. PUSA, Rational Approximations to the Matrix Exponential in Burnup Calculations, Nucl. Sci. Eng., 169, 2, 155–167 (2011)



General observations

• Generally the accuracy of CRAM depends relatively little on burnup
matrix size or norm

• Typically CRAM yields better relative accuracy for depleted fuel cases
compared to fresh fuel cases

• Particular nuclide chains may result in reduced relative accuracy for
some nuclides with low approximation orders

• For CRAM approximation order 16 the maximum relative error has been
at most of order 10−6 in all test cases



Summary

• The computation of matrix exponential has been considered
challenging in the context of burnup equations

• Established matrix exponential methods are based on approximation
near origin

• Burnup matrix eigenvalues were discovered to lie around the negative
real axis and CRAM can be characterized as the best rational
approximation there

• Results suggest that CRAM is capable of providing a robust and
accurate solution with a very short computation time

• Serpent was the first reactor physics code using this method



Further Reading

• Introduction to the topic and comparison between CRAM and
established matrix exponential methods:

– M. PUSA and J. LEPPÄNEN, Computing the Matrix Exponential in
Burnup Calculations, Nucl. Sci. Eng., 164, 2, 140–150 (2010)

• More detailed analysis on the accuracy and convergence of CRAM:

– M. PUSA, Rational Approximations to the Matrix Exponential in
Burnup Calculations, Nucl. Sci. Eng., 169, 2, 155–167 (2011)

• Comparison between CRAM, ORIGEN and TTA-based methods:

– A. Isotalo and P. A. Aarnio, Comparison of depletion algorithms,
Ann. Nucl. Energy, 38, 2–3, 261–268 (2011).


