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1 Introduction

Monte Carlo methods have been widely used for neutron transport calculations
since the 1950s [1]. In criticality calculations Monte Carlo methods are applied for
solving the k-eigenvalue problem, which results in estimates of the multiplication
factor and different reaction rates. An important topic in k-eigenvalue calculations is
the accuracy of the results and the reliability of the confidence intervals. The fission
source convergence, correct sampling of neutron histories and inter-cycle correlations
need to be taken into account in order to obtain accurate results [2]. The inter-cycle
correlations, which result in the underestimation of variance, have been regarded as
one of the major challenges on full-core reactor analysis [3].

One purpose of this work is to implement statistical tests in Serpent Monte Carlo
neutron transport code. Three tests are implemented, which can be used to detect
abnormalities in Monte Carlo statistics. Two normality tests, namely the Shapiro–
Wilk test and the D’Agostino–Pearson test, are used for detecting non-normalities
in the statistics. The third test is a “drift-in-mean” test which can identify changes
in the distributions of the estimates. The behaviour of the statistical tests are
studied using four test problems: a BWR lattice case, a two-dimensional slab case
and two three-dimensional pin-cell array cases, one with a homogeneous and the
other with a heterogeneous fuel profile. The other subject of this work is to study
the underestimation of variance in Serpent. The BWR lattice and the pin-cell array
cases are used for this study.

This work is organized as follows: In Sec. 2 the basics of the Monte Carlo neutron
transport are presented. The concerns in Monte Carlo statistics are then discussed
in Sec. 3. The normality tests are presented in Sec. 4 and the drift-in-mean test
in Sec. 5. The implementation and the usage of the tests are discussed in Sec. 6.
The tests and the underestimation of variance are studied using the BWR lattice,
slab and pin-cell array cases in Sec. 7, 8 and 9, respectively. Finally, we conclude in
Sec. 10.
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2 Monte Carlo neutron transport

Monte Carlo is a stochastic method which is used for simulating systems in many
fields of physics, engineering, finance and others. The basic idea of the method is to
simulate some known process using randomly generated values of input variables.
The desired output variables are calculated and collected during the simulation. Due
to the stochastic nature of the method, the results are random variables. Therefore,
the simulation is often repeated several times to obtain estimates of the means and
variances of the results.

There are many advantages in using the Monte Carlo method in neutron trans-
port calculations. The method is closely linked to the actual transport process of
neutrons. The linearity of the process allows each neutron to be simulated sepa-
rately, which enables the use of parallel computation. The method can be used
for simulating complex geometries, which can be a difficult task for deterministic
methods. Another advantage of using the Monte Carlo method is the capability to
use evaluated nuclear data in a continuous-energy form which is based on experi-
mental measurements and theoretical nuclear models. In deterministic codes, the
continuous-energy nuclear data is discretized into groups, which introduces inaccu-
racies in the results. A major disadvantage of the Monte Carlo neutron transport is
the high computational cost when solving large-scale problems.

In this section, the basics of the Monte Carlo neutron tracking in Serpent and the
k-eigenvalue method are described first. Then, the reaction rate estimators are
presented. Finally, we discuss the statistics of the estimates.

2.1 Neutron tracking in Serpent

The basic idea of the Monte Carlo neutron transport is to follow neutrons and record
their interactions with media in a user-defined geometry. The simulation proceeds
in cycles, or generations, in which neutrons are followed one by one. All the events
related to a neutron, such as scatterings, capture and fission, form the history of
that neutron. In another words, a cycle consists of neutron histories.

The neutron path in a medium consists of multiple straight-line segments, which
join the interaction points together. In the first cycle the start location of the path
is usually randomly selected from a uniform distribution. In the following cycles
the start location is determined by a fission site from the previous cycle. The end
location of the path is either an absorption site or the location on the boundary
of the geometry where the neutron escapes from the system. The path between
two interaction points, called the free path length, is sampled from an exponential
distribution and is given by [4]

l = − ln ξ

Σt,m

, (2.1)

where ξ is a uniformly distributed random variable on the interval [0, 1] and Σt,m is
the macroscopic total cross section of the material.
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On the interaction site, the target nucleus k is selected with a probability

Pk =
Σt,k

Σt,m

, (2.2)

where Σt,k is the macroscopic total cross section of the nucleus k. The reaction type
with the target nucleus is selected with a probability

Pi =
Σi,k

Σt,k

, (2.3)

where Σi,k is the macroscopic cross section of reaction type i with the nucleus k.
The possible reaction types are capture, fission and scattering. All reactions emitting
non-neutron secondary particles belong to capture type, such as (n,γ)-, (n,p)- and
(n,α)-reactions. In Serpent, a capture reaction terminates the neutron history. A
fission reaction also ends the neutron history and generates new source neutrons for
the next cycle. Elastic and inelastic scattering reactions change the direction and
energy of the neutron.

The user-defined geometry consists of homogeneous material regions called cells,
which each have their own macroscopic total cross sections. Therefore, the free path
length distribution is different in each cell. When a neutron moves from one cell to
another, the path length sampled in the first cell isn’t statistically valid in the next
one. A common way to solve this problem in Monte Carlo neutron transport codes
is to stop the neutron at the boundary surface of the two cells and then resample
the free path length. In practice, this requires a comparison between the sampled
path length and the distance to the nearest surface, which is the general idea of the
surface-to-surface ray-tracing method.

Another possible method for a neutron tracking procedure is the delta-tracking
method, in which the macroscopic total cross sections are homogenized by intro-
ducing virtual collisions. Virtual collisions are defined as collisions which preserve
the energy and direction of a neutron, hence having no effect on the simulation
statistics. The idea of the delta-tracking method is to add an adequate virtual cross
section to every material cross section, so that the resulting cross section has the
same value in the entire geometry. This resulting cross-section is called a majorant
cross section Σmaj(E) which is defined to be the maximum of the total cross sections
at each energy. The free path length is sampled using Σmaj(E) in every cell, which
eliminates the need for surface tracking. Virtual collisions are handled by rejection
sampling, which means that a real collision is accepted with a probability

Pm(E) =
Σt,m(E)

Σmaj(E)
(2.4)

and a virtual one with a probability 1− Pm(E). If a virtual collision occurs, a new
free path length is sampled.

The delta-tracking method has some major advantages over the surface-tracking me-
thod. As the calculation of the surface distances is not needed, the tracking is often
faster in complex geometries. Another advantage is the straightforward handling of
complicated surfaces and objects. The delta-tracking method has some drawbacks,
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though. In a highly heterogeneous geometry, e.g. in a geometry containing localized
heavy absorbers such as burnable absorber pins or control rods, the majorant cross
section is dominated by the cross section of the heavy absorber. However, the
volume fraction of the heavy absorber is small, and the Pm(E) becomes low outside
the heavy absorber. This results in a waste of computing time as the virtual collision
frequency increases. Another disadvantage of the delta-tracking is that the common
track-length flux estimator can’t be used. Instead, the less efficient collision flux
estimator is usually used with the delta-tracking method. The flux estimators are
discussed in more detail in Sec. 2.3.

To overcome the efficiency problems introduced by localized heavy absorbers, Ser-
pent uses a combination of surface-tracking and delta-tracking methods [4]. The
default delta-tracking method is switched to surface tracking when Pm(E) is low.

2.2 The k-eigenvalue method

In Serpent, the default calculation method is the k-eigenvalue method which is
used in stationary, self-sustaining fission chain reaction simulations. The method
is used for calculating an estimate of the effective multiplication factor keff , which
determines the criticality of the system under study. When keff is below unity,
the system is subcritical which means that the number of fissions decreases from
generation to generation. When keff is above unity, the number of fissions increases,
and the system is said to be supercritical. If keff is equal to unity, the system is
critical, meaning that the number of fissions is a constant. The k-eigenvalue method
is also used for calculating estimates of different reaction rates.

A k-eigenvalue simulation proceeds in cycles consisting of neutron histories. As
already stated, the neutron source distribution is provided by the fission distribution
of the previous cycle. The source size usually changes from cycle to cycle due
to randomness or the nature of the simulation. To prevent the source size from
increasing or decreasing, neutrons are either removed from or added to the source
after each cycle.

At the beginning of the simulation the source may be far from the stationary con-
verged distribution. Therefore, an adequate number of cycles must be skipped before
the gathering of statistics can be started. The skipped cycles are called inactive cy-
cles, whereas the cycles used for recording statistics are called active cycles. The
active cycles are continued until a desired level of accuracy is obtained. The final
estimates are calculated from the cycle-wise estimates as presented in Sec. 2.4.

2.3 Result estimation

In neutron transport calculations, the Monte Carlo method is usually used for esti-
mating reaction rates of type

R =
1

V

∫
V

∫
E

f(r, E)φ(r, E)d3rdE, (2.5)
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where V is some volume element, E is some energy domain, f(r, E) is a response
function representing some physical parameter and φ(r, E) is a scalar neutron flux.
The response function can be for example a macroscopic reaction cross section.
In the Monte Carlo method, reaction rates are obtained by forming estimates (or
estimators) from scores which are recorded during the simulation in the given volume
and energy interval. The estimators can be categorized into analog and implicit
estimators.

The basic idea of analog estimators is to count the number of reactions occurring in
the given volume and energy interval. A simple example of an analog estimate is the
total reaction rate estimate obtained by calculating the total number of reactions
in a cycle. An implicit estimate, on the other hand, is calculated by multiplying an
appropriate flux estimate by a desired response function. Given a flux estimate φ
and a response function f , the implicit reaction rate estimate is given as

Rimp =
I∑
i=1

fiφi, (2.6)

where the summation is over the scored values in the given volume and energy
interval. The variance of the implicit estimator is usually smaller than the variance
of the analog estimator because a score is recorded even without an actual reaction
taking place. The physical reaction rate corresponding to Eq. (2.5) is obtained by
normalizing the analog or implicit estimate.

The most commonly used flux estimator is the track length estimator which is based
on recording track lengths. The reaction rate of the estimate is given by

Rtle =
I∑
i=1

fili, (2.7)

where li is the track length. A score is recorded each time a neutron creates a track,
including when a neutron passes the boundary of a cell. Another common estimator
is the collision flux estimator

Rcfe =
I∑
i=1

fi
Σt,i

, (2.8)

where Σt,i is the macroscopic total cross-section in the scored material. As the name
suggests, a score is recorded each time a collision occurs. The resulting estimate is
the expected rate of the interactions corresponding to the response function. The
collision estimator is less efficient than the track-length estimator which doesn’t
require an interaction taking place in the cell for the score to be recorded. The
efficiency difference is seen especially in small volumes.

2.3.1 Estimates for keff

Serpent provides three estimates for keff . The analog estimate for keff (also known as
the generation estimate) is defined as the ratio of the source sizes of two subsequent
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cycles

keff,ana =
Mj+1

Mj

. (2.9)

The implicit estimate for keff is the absorption estimate which is calculated as the
ratio of the production rate and the loss rate of neutrons

keff,imp =
νRf

Rf +Rc −R(n,xn) +RL

, (2.10)

where ν is the average number of neutrons emitted in a fission, Rf is the total fission
rate, Rc is the total capture rate, R(n,xn) is the total inelastic scattering production
rate of neutrons and RL is the total neutron leakage rate.

The third estimate for keff is the collision estimate which is calculated as the ratio
of the collision estimate of born fission neutrons and the source size

keff,col =
νRf

M1

, (2.11)

where M1 is the initial source size.

2.4 Statistics of the estimates

In the Monte Carlo method, the final estimate of the studied parameter is usually
given as the sample mean of single estimates obtained by repeating the simulation.
In k-eigenvalue calculations, single estimates are calculated from the scores recorded
during active cycles. In Serpent, the scores are collected into batches to form batch-
wise estimates using, for example, the collision estimator. If the scores collected to
a batch are from a single cycle, then a batch-wise estimate is equal to a cycle-wise
estimate.

In Serpent, the final estimate is the sample mean calculated as

x =
1

N

N∑
n=1

xn, (2.12)

where N is the number of batches and xn is a batch-wise estimate. The accuracy
of the result is reported as the standard deviation of x, which is also known as the
standard error of the mean, and is denoted by

σx =

√√√√ 1

N(N − 1)

N∑
n=1

(xn − x)2. (2.13)

The standard deviation of x is a measure of variation in the results of multiple
identical and independent simulations. A more convenient form for the accuracy is
the relative standard error (or relative statistical error) given by

RSE =
σx
x
. (2.14)
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The standard error of the mean can be interpreted as a confidence interval, in which
the sample mean falls with the corresponding probability. In order to determine the
confidence intervals, the distribution of the mean must be known. According to the
central limit theorem, the distribution of x approaches to a normal distribution if
the variables xn are independent and identically distributed (iid) and have a finite
mean µ and a variance σ2 [5], i.e.

lim
N→∞

P

(
a <

x− µ
σ/
√
N
< b

)
=

1√
2π

∫ b

a

e−x
2/2dx. (2.15)

If N is sufficiently large, x is approximately normally distributed with a mean µ and
a variance σ2

x, i.e. x ∼ N (µ, σ2
x). Now, the standard deviation σx is easy to interpret

as a confidence interval, e.g. , the probability that x lies within one σx of the true
mean is around 68%.

The batch estimate xn is also approximately normally distributed if xn is formed
by summing random variables together as in Eq. (2.6) and the assumptions of the
central limit theorem hold. If xn is calculated as a product or ratio of random
variables, then it is not normally distributed in general. However, the product
of two independent normally distributed random variables X1 ∼ N (µ1, σ

2
1) and

X2 ∼ N (µ2, σ
2
2) is approximately normally distributed if the ratios µ1/σ1 and µ2/σ2

are large enough [6]. Also, the distribution of the ratio of two independent normally
distributed random variables can be approximated by a normal distribution under
certain conditions [7]. The estimates for keff , which are products and ratios of
random variables, are usually considered normally distributed [8].
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3 Concerns in Monte Carlo statistics

The main concerns related to the accuracy of the results of a Monte Carlo neutron
transport simulation are the convergence of the source distribution, the number of
neutron histories and the inter-cycle correlations [2]. Here, we discuss the nature
and the effects of these issues, and describe how they can possibly be detected by
using simple statistical tests.

3.1 Convergence of the source distribution

As described in Sec. 2.2, the k-eigenvalue method is used for calculating estimates for
keff and reaction rates in a system having a stationary source distribution. However,
if the source distribution hasn’t converged when the collecting of the statistics is
started, the estimates and their uncertainties will not be accurate. The sufficient
number of inactive cycles can be found by studying the convergence of both keff and
the source distribution. The convergence of merely keff is not a sufficient criterion
to begin the active cycles because the source distribution can converge more slowly
than keff [9].

A common way to measure the convergence of the source is to use the Shannon
entropy [10]. This method involves creating a three-dimensional mesh over the
fissionable regions, and counting the fraction of fission sites in each mesh bin. The
Shannon entropy is then calculated as

Hsrc = −
Ns∑
J=1

PJ log2(PJ), (3.1)

where Ns is the number of mesh bins and PJ is the number of source neutrons in
mesh bin J divided by the total number of source neutrons. To determine when the
source has converged, it is advised to study the behaviour of both keff versus cycle
and the Shannon entropy versus cycle [11].

Although the Shannon entropy is a useful tool for determining the convergence of
the source distribution, it should be used with caution in problems in which the
source convergence is difficult to obtain. An example of such a problem is a fuel pin
with a symmetric flux profile having a low minimum at the centre. In this particular
case, the source can converge into a stable, strongly asymmetric distribution which is
physically incorrect [12]. Therefore, the possible peculiarities of the studied problem
should be taken into account when conducting simulations.

3.2 Number of neutron histories

The number of neutron histories used per cycle affects the number of recorded scores.
In general, the greater the number of source neutrons is, the better the obtained
statistics are. The number of neutron histories must be large enough so that the
problem space is adequately sampled. If some region of the geometry is poorly



RESEARCH REPORT VTT-R-00371-14
12 (67)

sampled, the reaction rate estimates and their errors at the region will be incorrect.
This also results in the underestimation of variance as the obtained reaction rate
distribution is likely to be incomplete.

As described in Sec. 2.2, the source size is adjusted to be constant after each cycle.
This normalization introduces bias in keff and local reaction rates [2]. However,
this bias is inversely proportional to the number of neutron histories, and it can be
reduced or eliminated by using an adequate number of source neutrons. It is rec-
ommended that at least 10,000 source neutrons should be used per cycle to prevent
the bias [2].

3.3 Inter-cycle correlations

An important issue in Monte Carlo criticality calculations is the underestimation
of variance caused by inter-cycle correlations. The standard deviation calculated
with Eq. (2.13) is unbiased when there are no correlations between the batch-wise
estimates. However, in k-eigenvalue calculations, the source distribution in each
cycle is provided by the fission distribution of the previous cycle. If the concentration
of fission neutrons is high at some location of the geometry, the concentration is
likely to be high in the next cycle as well. This means that there exists a positive
correlation between the source distributions, which leads to the underestimation of
variance [11].

The underprediction of uncertainties can be studied by comparing the real and the
apparent standard deviation. The apparent standard deviation is the mean of the
standard deviations of S independent simulations, and is given by

σa =
1

S

S∑
k=1

σxk , (3.2)

where σxk is calculated as in Eq. (2.13). The real standard deviation is the sample
standard deviation of the estimates for S independent simulations, and is denoted
by

σ̂r =

√√√√ 1

S − 1

S∑
k=1

(
xk − x

)2
, (3.3)

where xk is the estimate for each simulation and x is the mean of the estimates.
The measure of the uncertainty underestimation is the ratio of σ̂r and σa which is
denoted by

fσ =
σ̂r
σa
. (3.4)

In 2D full core simulations, some reported values of fσ have been between 3 and
5 [2,13]. With more challenging configurations, the value of fσ can be above 40 [12].

One simple way to obtain more accurate estimate of variance is to use a batch means
method, in which multiple cycle-wise estimates are included in each batch. It can
be shown that the batch means are less correlated than the individual cycles [14].
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The batch means method has been shown to reduce the underestimation of variance
in three-dimensional PWR full-core models [15, 16]. This method is also available
in Serpent.

3.4 Motivation for using statistical tests

Simple statistical tests can be used for detecting a non-converged source distribu-
tion and poor sampling of neutron histories. The tests are aimed for identifying
abnormalities in the distributions of the batch-wise estimates of keff and reaction
rates. As described in Sec. 2.4, the batch-wise estimates are normally distributed
if the assumptions of the central limit theorem hold, or the estimates are otherwise
approximately normally distributed. Deviations from the normal distribution indi-
cate that the scored values are not identically distributed, or the number of scores
is too small. These causes of non-normality are related to the non-converged source
distribution and poor sampling.

If the source distribution hasn’t converged when the collecting of the results is
started, the distributions of the estimates of keff and reaction rates will change as
the active cycles proceed. If the change is significant, the distributions will be
non-normal, which can be detected by normality tests. However, the change can
also be so small that normality tests can’t identify any deviations from a normal
distribution. Therefore, a so-called “drift-in-mean” test is needed to detect changes
in the distributions.

The non-normalities of the estimate distributions may also be due to insufficient
number of recorded scores. This issue arises when some region of the geometry is
poorly sampled, i.e. the number of neutron histories is too low. This is a prob-
lem especially when the volume in which the scores are recorded is small and the
interaction probability is low.

To conclude this section, normality tests can be used for detecting poor sampling
of neutron histories and possibly a non-converged source distribution. The selected
normality tests for Serpent are presented in Sec. 4. A test suited especially for
identifying a non-converged source is the drift-in-mean test which is presented in
Sec. 5.
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4 Normality tests

Numerous different methods exist for testing the normality of a given data set. The
simplest ones are graphical methods which can be useful for quick checking of the
normality. However, they don’t provide any conclusive evidence of the normality and
their usage can be cumbersome when there are numerous data sets to be studied.
Therefore, statistical tests have been created to provide mathematical evidence of
the non-normality of the data.

The most commonly used normality tests, which belong to frequentist statistical
tests, are tests against the null hypothesis H0 that the data is normally distributed.
The first step in the testing procedure is to compute a test statistic, which follows
some known distribution. The test statistic is then converted into a p-value which is
the probability of getting a test statistic equal to or smaller than the one observed
under the null hypothesis. The null hypothesis is rejected if the p-value is less than
a predetermined significance level. If the p-value is greater than the significance
level, one fails to reject the null hypothesis. For example, if the significance level is
chosen to be 0.05 and the obtained p-value is less than this, one can conclude that
with 95% probability the data isn’t normally distributed.

Although normality tests can be useful for detecting non-normalities, they should
be used with caution. One problem is in the testing against the assumption of nor-
mality. By rejecting the null hypothesis, one can conclude with a certain probability
that the underlying data set is not drawn from a normal distributed random variable.
But if one fails to reject the null hypothesis, one can’t conclude that the random
variable really is normally distributed. Another limitation is the effect of the sample
size on normality tests. When the size of the data set is small, normality tests may
not find the deviations from the normal distribution. On the contrary, when the
sample size is large, even small deviations from the normality are detected, and thus
the null hypothesis is rejected even though the distribution would otherwise look
like normally distributed. It is therefore suggested that normality tests should be
used together with graphical methods [17].

There are contradicting results regarding which normality test is the best or optimal
one [18]. When choosing a normality test, one should take into account the sample
size and prior information of the distribution. The recommended tests in the litera-
ture include the Shapiro–Wilk test and the D’Agostino–Pearson test [17–20]. These
two tests have very different approaches to the normality testing. The Shapiro–
Wilk test belongs to the regression-type tests, whereas the D’Agostino–Pearson test
is based on the sample skewness and kurtosis. In some comparisons the Shapiro–
Wilk test has been powerful for testing asymmetric distributions, but it performs
well with symmetric distributions as well [18,21]. The D’Agostino–Pearson test has
a good power for testing symmetric short-tailed distributions [18].

Due to their different approaches and the recommendations in the literature, the
Shapiro–Wilk test and the D’Agostino–Pearson test were chosen to be implemented
in Serpent. The main ideas of these tests are presented in this section.
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4.1 Shapiro–Wilk test

The Shapiro–Wilk test and its variations are one of the most popular and recom-
mended normality tests. The idea of the test is to compare two estimates of the
variance: the best linear unbiased estimator and the sample estimate. Here, the
Shapiro–Wilk test statistic is derived and discussed briefly.

Let x1, . . . , xn be an ordered iid random sample from a standard normally distributed
random variable X, i.e. X ∼ N (0, 1). Furthermore, let m = [m1, . . . ,mn]T denote
the vector of the expected values of x1, . . . , xn and V = (vij) the corresponding
covariance matrix, that is

E(xi) = mi, i = 1, . . . , n,

cov(xi, xj) = vij, i, j = 1, . . . , n.
(4.1)

Also, let y1, . . . , yn be an ordered iid random sample from a random variable Y . The
objective is to test whether this sample is from a normal distribution with a mean
µ and variance σ2, that is, may yi be expressed as

yi = µ+ σxi, i = 1, . . . , n. (4.2)

Using generalized least-squares theorem, µ and σ can be estimated by minimizing
(y−µ1−σm)TV−1(y−µ1−σm), where y = [y1, . . . , yn]T and 1 = [1, . . . , 1]T [22].
According to the Gauss-Markov theorem, least-squares estimators have the smallest
variance of any unbiased linear estimators. Therefore, these estimates are called the
best linear unbiased estimators (BLUEs). The BLUEs of µ and σ are [23]

µ̂ =
mTV−1(m1T − 1mT )V−1y

1TV−11mTV−1m− (1TV−1m)2
,

σ̂ =
1TV−1(1mT −m1T )V−1y

1TV−11mTV−1m− (1TV−1m)2
.

(4.3)

If the sample y1, . . . , yn is normally distributed, then 1TV−1m = mTV−11 = 0 and
1TV−1 = 1T , and µ̂ and σ̂ can be expressed as

µ̂ =
1

n

n∑
i=1

yi = y,

σ̂ =
mTV−1y

mTV−1m
.

(4.4)

Furthermore, let

S2
n =

n∑
i=1

(yi − y)2 (4.5)

be the unbiased estimate of (n − 1)σ2. We can now define the Shapiro–Wilk test
statistic as

W =
R4σ̂2

C2S2
n

=
(aTy)2

S2
n

=
(
∑n

i=1 aiyi)
2∑n

i=1(yi − y)2
, (4.6)
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where
R2 = mTV−1m,

C2 = mTV−1V−1m,

aT = [a1, . . . , an] =
mTV−1

(mTV−1V−1m)1/2
.

(4.7)

The constants R and C are introduced to Eq. (4.6) in order to obtain a normalized
coefficient vector a, that is

aTa =
n∑
i=1

a2
i = 1. (4.8)

Another important property of a is that [23]

− ai = an−i+1, i = 1, . . . , n. (4.9)

For odd n, i.e. n = 2l + 1, l ∈ N, the middle coefficient al+1 is zero.

From the definition (4.6) we can see that the W statistic is, up to a constant, the
ratio of the BLUE of σ2 and the unbiased estimate of σ2. Only the numerator of
W depends on the normality assumption (4.2). If the vector y really is normally
distributed, then the numerator and denominator of W are both estimating, up to
a constant, the variance. Therefore, a value of W close to unity indicates that the
sample y is normally distributed.

A major drawback of the W statistic is that its distribution can’t be given in an
explicit form. The distribution is needed for converting the test statistic into a p-
value. One option is to conduct empirical simulations for obtaining test statistics
corresponding to desired significance levels. The other way is to approximate the
distribution of W or its transformations. Another challenge in W statistic is that the
values of m and V−1 are unknown for large sample sizes. This problem can be solved
by either finding approximations for the elements of m and V or approximating a
directly. The direct approach avoids the computation of matrix V−1 which can be
computationally demanding for large sample sizes.

4.1.1 Royston’s extension

Probably the most common way to compute the Shapiro–Wilk test is to use Roys-
ton’s extension [24,25]. This method has been implemented by many numerical and
statistical software packages, such as Matlab, R ans SAS. The idea of the Royston’s
extension is to approximate a directly with a vector ã which is then used for com-
puting a test statistic WR. Using a normalizing transformation, WR is transformed
into an approximately normally distributed test statistic zWR

. The Shapiro–Wilk
test with Royston’s extension is a one-tailed test in a sense that only large positive
values of zWR

indicate non-normality.

As a basis for approximating a, Royston used vector c given as

c =
m̃

(m̃Tm̃)
1
2

, (4.10)
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where m̃ is an approximation of m. The elements of m̃, which are also known as
Blom scores [26], are denoted by

m̃i = Φ−1

(
i− 3

8

n+ 1
4

)
, i = 1, . . . , n, (4.11)

where Φ−1 is the inverse of the standard normal cumulative distribution function.
Vector c is used in the Weisberg-Bingham test statistic [27]

WB =
(cTy)2

S2
=

(
∑n

i=1 ciyi)
2∑n

i=1(yi − y)2
, (4.12)

which is asymptotically equal to the W statistic. Up to a constant, c differs from
a mainly in the first two and last two components. Using polynomial regression
analysis of an− cn and an−1− cn−1 on u = n−

1
2 , Royston approximated an and an−1

as

ãn = cn + 0.221157u− 0.147981u2 − 2.07119u3 + 4.434685u4

− 2.706056u5,
(4.13)

ãn−1 = cn−1 + 0.042981u− 0.293762u2 − 1.752461u3 + 5.682633u4

− 3.582633u5.
(4.14)

The rest of the components of a can be approximated by normalizing each m̃i as

ãi = φ−1/2m̃i for

{
i = 2, . . . , n− 1 , n ≤ 5

i = 3, . . . , n− 2 , n > 5
, (4.15)

where

φ =


m̃Tm̃− 2m̃2

n

1− 2ã2
n

, n ≤ 5

m̃Tm̃− 2m̃2
n − 2m̃2

n−1

1− 2ã2
n − 2ã2

n−1

, n > 5

. (4.16)

Approximating a as ã = [ã1, . . . , ãn]T , the test statistic WR can be defined as

WR =
(ãTx)2

S2
n

=
(
∑n

i=1 ãiyi)
2∑n

i=1(yi − y)2
. (4.17)

Using a proper transformation, the WR test statistic can be transformed into an
approximately standard normally distributed test statistic. For sample sizes 4 ≤ n ≤
11, Royston fitted the empirical distribution of ln(1−WR) with a three-parameter
lognormal distribution

fln(1−WR)(t) =
1

(t− γR)σR
√

2π
exp

{
− [ln(t− γR)− µR]2

2σ2
R

}
, (4.18)

and for 12 ≤ n ≤ 2,000, he fitted the empirical distribution of 1 − WR with a
two-parameter lognormal distribution

f1−WR
(t) =

1

tσR
√

2π
exp

{
− [ln t− µR]2

2σ2
R

}
. (4.19)
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The parameters γR, µR and σR were then estimated by smoothing them as functions
of n. As a result, Royston proposed an approximately standard normally distributed
test statistic

zWR
=


− ln[γR − ln(1−WR)]− µR

σR
, 4 ≤ n ≤ 11

ln(1−WR)− µR
σR

, 12 ≤ n ≤ 2,000

(4.20)

where for sample sizes 4 ≤ n ≤ 11

γR = −2.273 + 0.459n

µR = 0.544− 0.39978n+ 0.025054n2 − 6.714 · 10−4n3

σR = exp(1.3822− 0.77857n+ 0.062767n2 − 0.0020322n3)

(4.21)

and for 12 ≤ n ≤ 2,000

µR = −1.5861− 0.31082 lnn− 0.083751(lnn)2 + 0.0038915(lnn)3

σR = exp[−0.4803− 0.082676 lnn+ 0.0030302(lnn)2].
(4.22)

Although the maximum sample size used here is 2,000, Royston claimed that the
test is valid up to n = 5,000 [24]. Both of these limits are used in numerical and
statistical softwares, e.g. SAS uses the former whereas Matlab and R use the latter.

4.2 Moment tests

Moment tests are based on the use of sample moments of a distribution. Here, we
present the third and the fourth moment and use them in the skewness and kurtosis
tests for normality. These test are then combined in the D’Agostino–Pearson test.

The third and fourth standardized moments of the distribution of a random variable
X are called skewness and kurtosis and are defined as, respectively,

√
β1 =

E
[
(X − µ)3](

E
[
(X − µ)2])3/2

, (4.23)

β2 =
E
[
(X − µ)4](

E
[
(X − µ)2])2 , (4.24)

where E is the expected value operator and µ is the mean of the distribution.
Skewness measures how much the probability distribution leans to one side of the
mean. Positive

√
β1 corresponds to skewness to the right and negative to the left.

As the normal distribution is symmetric about its mean, its skewness is zero.

Kurtosis can be interpreted as a measure of tail thickness. The normal distribu-
tion has kurtosis equal to 3. Distributions with β2 > 3 have heavier tails than a
normal distribution and distributions with β2 < 3 have lighter tails. Examples of
distributions with different values of skewness and kurtosis are illustrated in Fig. 4.1.
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Figure 4.1: Visualization of skewness and kurtosis. The solid line in (a) is a left-skewed
distribution (

√
β1 < 0), in (b) a right-skewed distribution (

√
β1 > 0), in (c) a heavy-tailed

distribution (β2 > 3) and in (d) a light-tailed distribution (β2 < 3). The dashed line in
each case presents a normal distribution (

√
β1 = 0, β2 = 3).

The empirical counterparts of skewness and kurtosis are the sample skewness defined
as √

b1 =
m3

m
3/2
2

=
1
n

∑n
i=1(xi − x)3[

1
n

∑n
i=1(xi − x)2

]3/2 (4.25)

and the sample kurtosis defined as

b2 =
m4

m2
2

=
1
n

∑n
i=1(xi − x)4[

1
n

∑n
i=1(xi − x)2

]2 , (4.26)

where mk is the k-th central sample moment and x is the sample mean. The sample
skewness and kurtosis are estimators for theoretical skewness and kurtosis. The
value of

√
b1 is expected to be close to 0 and the value of b2 close to 3 if the sample

is from a normal distribution. Deviations from these values indicate that the given
data set doesn’t follow a normal distribution.
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4.2.1 Skewness test

It can be shown that
√
n
√
b1 is asymptotically normally distributed with a mean 0

and variance 6 [21], that is
√
n
√
b1

D−−→ N(0, 6) as n→∞. (4.27)

The problem in using
√
n
√
b1 as a test statistic is that its convergence is relatively

slow, and hence it can’t be used for small samples (n < 150). To overcome this
problem, D’Agostino proposed a transformation to approximate the distribution of√
b1 as [28]

Z(
√
b1) = δ ln

(
Y

ν
+

√
Y 2

ν2
+ 1

)
, (4.28)

where

Y =
√
b1

(
(n+ 1)(n+ 3)

6(n− 2)

)1/2

, (4.29)

τ =
3(n2 + 27n− 70)(n+ 1)(n+ 3)

(n− 2)(n+ 5)(n+ 7)(n+ 9)
, (4.30)

ω2 =
√

2 (τ − 1)− 1, (4.31)

δ = 1/
√

lnω, (4.32)

ν =
√

2/(ω2 − 1). (4.33)

Z(
√
b1) is approximately standard normally distributed under the null hypothesis

that the data is normally distributed. The approximation works satisfyingly for
sample sizes of n > 8.

4.2.2 Kurtosis test

It can be shown that
√
nb2 is asymptotically normally distributed with a mean µ = 3

and variance σ2 = 24 [21], i.e.
√
n(b2 − 3)

D−−→ N(0, 24) as n→∞. (4.34)

The convergence of
√
nb2 to its asymptotic value is very slow. This problem can

be solved with an appropriate transformation to the standard normal distribution.
The most used transformation is the one given by Anscombe and Glynn [29], which
is

Z(b2) =

√
9A

2

1− 2

9A
−

(
1− 2/A

1 + ξ
√

2/(A− 4)

)1/3
 , (4.35)

where

A = 6 +
8√
β1(b2)

[
2√
β1(b2)

+

√
1 +

4

β1(b2)

]
, (4.36)

ξ =
b2 − E[b2]√

Var(b2)
. (4.37)
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In Eq. (4.36)
√
β1(b2) is the third moment of b2 denoted by

√
β1(b2) =

6(n2 − 5n+ 2)

(n+ 7)(n+ 9)

√
6(n+ 3)(n+ 5)

n(n− 2)(n− 3)
. (4.38)

Eq. (4.37) is the normal approximation of b2 where E[b2] is the expectation value
and Var(b2) is the variance of b2. Under the normality assumption they are denoted
by

E [b2] =
3(n− 1)

(n+ 1)
, (4.39)

Var(b2) =
24n(n− 2)(n− 3)

(n+ 1)2(n+ 3)(n+ 5)
. (4.40)

The variable Z(b2) is approximately standard normally distributed under the nor-
mality assumption for sample sizes of n ≥ 20.

4.2.3 D’Agostino–Pearson test

The D’Agostino–Pearson test (also known as the D’Agostino–Pearson K2 test) is an
omnibus test which combines the skewness and kurtosis tests described in Sec. 4.2.1
and 4.2.2 [30]. Here, omnibus means that the test is capable of detecting departures
from normality due to either skewness or kurtosis. The test statistic is defined as

K2 = Z2(
√
b1) + Z2(b2), (4.41)

where Z(
√
b1) is given by Eq. (4.28) and Z(b2) by Eq. (4.35). The test statistic K2

is χ2
2-distributed under the null hypothesis and assuming that Z(

√
b1) and Z(

√
b1)

are independent.
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5 Drift-in-mean test

The drift-in-mean test can be used for testing whether the mean of an estimate
is drifting during active cycles. An appropriate statistical test for this purpose is
an unequal variance t-test (also known as Welch’s t-test), which tests whether the
means of two groups differ from each other. The test statistic of the test is defined
as

t =
x2 − x1√
s1
n1

+ s2
n2

, (5.1)

where xi is the mean, si is the unbiased estimator of the variance and ni is the sample
size of the group i = {1, 2}. The test statistic follows approximately Student’s t-
distribution with degrees of freedom of [31]

ν ≈

(
s21
n1

+
s22
n2

)2

s41
n2
1(n1−1)

+
s42

n2
2(n2−1)

. (5.2)

In order to calculate the p-value from the test statistic t, the cumulative distribution
function of the t-distribution is needed. For t > 0, it can be calculated as

Fν(t) = 1− 1
2
Iu(t)

(
ν
2
, 1

2

)
, (5.3)

where Iu(t) is the regularized incomplete beta function and

u(t) =
ν

t2 + ν
. (5.4)

For negative values of t, Fν(t) is obtained by symmetry. The regularized incomplete
beta function is defined as

Iu(a, b) =
Bu(a, b)

B(a, b)
, (5.5)

where B(a, b) and Bu(a, b) are the ordinary and incomplete beta functions, respec-
tively, which are defined as

B(a, b) =

∫ 1

0

va−1(1− v)b−1dv, (5.6)

Bu(a, b) =

∫ u

0

va−1(1− v)b−1dv. (5.7)

The ordinary beta function can be calculated using its other form

B(a, b) =
Γ(x)Γy

Γ(x+ y)
. (5.8)

Rather than calculating Eq. (5.8) directly, it is usually calculated by taking an
exponential of the logarithms of the gamma functions. The natural logarithm of the
gamma function is provided, e.g., by the C standard library. The incomplete beta
function can be calculated using its series form

Bu(a, b) =
xa

a

(
1 + a

∞∑
j=1

(1− b)(2− b) · · · (j − b)
j!(a+ j)

xj

)
, (5.9)
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which can be truncated after it has converged properly. The accuracy of the com-
putation of Iu(a, b) can be increased by taking an advantage of the property

Iu(a, b) = 1− I1−u(b, a). (5.10)

A good rule of thumb for using this form is when u > a/(a+ b+ 2). This holds only
for calculating the cumulative distribution function, not in general.

A good approximation for calculating the p-value for large values of ν is to use
normal distribution as [32]

Fν(t) ≈ Φ(z(t, ν)), (5.11)

where Φ is the cumulative distribution function of the standard normal distribution
and

z(t, ν) =

√
ln (1 + t2/ν) (ν − 1)2

ν − 1.5
. (5.12)

For example, for ν = 400, the relative error for calculating the p-value 0.01 is
around 3.5× 10−6, which is small enough for this purpose. The relative error of this
approximation decreases as ν increases.
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6 Implementation and usage of the statistical

tests

6.1 Implementation of the tests

The Shapiro–Wilk test with Royston’s extension and the D’Agostino–Pearson test
were implemented as presented in Sec. 4. The algorithm for the inverse of the stan-
dard normal cumulative distribution function used in Eq. (4.11) was taken from
Ref. [33]. The skewness and kurtosis tests presented in Sec. 4.2.1 and 4.2.2, respec-
tively, were implemented separately, although their results are not printed in the
output file but only used in the D’Agostino–Pearson test.

The drift-in-mean test was implemented as presented in Sec. 5. The cumulative dis-
tribution function of the Student’s t-distribution is calculated using the regularized
incomplete beta function when ν < 400. When ν ≥ 400, the normal approximation
given by Eq. (5.11) is used. However, in the simulations presented in Sec. 7, 8 and
9, Fν(t) was approximated with the standard normal distribution as

Fν(t) ≈ Φ(t). (6.1)

It was tested that this approximation didn’t produce any significant error to the
results as the number of active cycles was large in all the tested cases.

The implementation of the drift-in-mean test enables to divide the input data into
two or more parts, and the test is then performed on the adjacent parts. The default,
hard-coded option is to divide the data in half. This means that the default test
studies whether the distribution of the first half of the active cycles differs from the
distribution of the second half. The direction of the drift can be determined from
the sign of the test statistic. A positive test statistic indicates that the mean is
increasing, whereas a negative test statistic means that the mean is decreasing.

The chosen significance levels for this work were 0.05 for the normality tests and
0.01 for the drift-in-mean test. However, due to an error in the p-value calculation,
an incorrect 0.1 significance level was used for the Shapiro-Wilk test. The error is
explained in further detail in Sec. 7.1. As a side note, MCNP code uses both 0.05
and 0.01 significance levels for normality testing and produces a warning message if
the p-value is smaller than the latter [8]. Similar feature could be well implemented
in Serpent, too.

6.2 Input and output

The statistical tests are performed automatically for the analog, implicit and col-
lision estimates of keff , mean population size and weight, and transport runtime
and CPU usage. For detectors, the statistical tests can be activated by adding
“dhis = 1” to the detector definition. The tests are performed only on the active
cycles.
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The output of the statistical tests is printed in Matlab m-file format to a file named
“<input>_stat.m”, where “<input>” is the name of the Serpent input file. The
variables in the file are named as “STATTESTS_<parameter>”, where “<parameter>”
is the name of the tested parameter defined in Serpent. The output file contains
three columns for each statistical test. The first column presents the test statistic,
the second column the p-value and the third column the pass value of the test. The
pass value is 1 if the test passed and 0 if it failed. The test statistic, p-value and the
pass value can also be NaN (not a number). All the tests produce a NaN output
if every element in the tested data is the same. This happens, for example, when
a detector bin remains empty in all cycles. Another cause of a NaN output is that
the number of samples in the data set is too small. The Shapiro–Wilk and the
D’Agostino–Pearson tests produce a NaN output if the number of samples is less
than 4 and 20, respectively.

6.3 Important notes

The p-value of a test is the probability of obtaining the sample by chance assuming
that the null hypothesis of the test is true. Therefore, it’s possible that the random
variable under study is normally distributed even if the test fails. This behaviour
can be adjusted by changing the significance level.

As noted in Sec. 2.4, batch-wise estimates are not normally distributed in general if
they are formed by products or ratios of random variables. Therefore, the way the
estimates are calculated must be taken into account before making any conclusions
about the results of the normality tests.

The Shapiro–Wilk test is assumed to be accurate up to sample sizes of 5,000. How-
ever, the test is also performed for sample sizes above 5,000, but the results may
not be reliable. Therefore, the D’Agostino–Pearson test should be considered more
trustworthy if the sample size exceeds 5,000.

The normality tests should be used with some caution. If the sample size is too
small, the tests might not find the deviations from the normal distribution. With
large sample sizes, even small deviations from the normal distribution may result in
rejection of normality. Therefore, it is recommended that the tests should be used
together with graphical methods.
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7 BWR lattice test problem

In this section, the implemented statistical tests and the underestimation of variance
are studied using a BWR lattice test case, which demonstrates the calculation of
fast neutron flux in a boiling water reactor (BWR) lattice. This test problem should
be well-behaved in a sense that the source is expected to converge quickly, and the
underestimation of variance should be small. The uncertainty underprediction is
studied for the estimate of fast neutron flux, and the behaviour of the statistical
tests are investigated with the cycle-wise estimates of fast neutron flux and keff .
The effect of the number of neutron histories per cycle and the number of inactive
cycles are studied both with the underestimation of the variance and the statistical
tests.

The BWR lattice contains seven types of fuel pins in a 10 × 10 assembly and an
asymmetrically positioned moderator channel as presented in Fig. 7.1. The fast
neutron flux (E > 1 MeV) is calculated in the cladding and in the inner and outer
moderator channel walls using four detectors. Detector 1 and 2 are used for cal-
culating the average and pin-wise fast flux in the cladding, respectively, whereas
detector 3 and 4 are used for calculating the fast flux in the inner and outer mod-
erator channel walls, respectively. The complete definition of the BWR case can be
found in the Serpent user’s manual [34].

Three sets of cases with 2,000, 10,000 and 50,000 source neutrons per cycle were
studied. In each set, the numbers of inactive cycles used were 10, 100, 200, 400, and
800. The number of active cycles in each test configuration was 800. 50 independent
simulations were run for each case.

7.1 Results of the statistical tests

The statistical tests are investigated here by comparing their pass rates in the tested
configurations. A pass rate is calculated by taking the mean of the pass values of
the simulation runs. The used significance levels were 0.05 for the D’Agostino–
Pearson test and 0.01 for the drift-in-mean test. Due to a small error in the p-value
calculation, a 0.05 significance level was used for both tails of the normal distribution
of the Shapiro–Wilk test statistic. This resulted in incorrect 0.1 significance level
because only a large positive Shapiro–Wilk test statistic indicates non-normal data.
Therefore, the pass rates of the Shapiro–Wilk test are lower than the ones of the
D’Agostino–Pearson test in this section, and also in Sec. 8 and 9.

The pass rates of the statistical tests performed on the estimates of fast neutron flux
are presented in Fig. A.1–A.4 in Appendix A. A common feature in all the cases
is that the number of inactive cycles doesn’t have any consistent effect on the pass
rates. Also, the pass rates of the drift-in-mean test are close to unity regardless of
the number of source neutrons per cycle or the number of inactive cycles. These
results imply that the distributions of the flux estimates didn’t change much during
the active cycles.
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Figure 7.1: The BWR lattice geometry.

The pass rates of the normality tests vary significantly between the estimates. With
the average fast flux in the cladding (Fig. A.1), the pass rates of the normality
tests are between 0.8 and 1, and they increase slightly with the number of neutron
histories per cycle. The cycle-wise distribution is very normal-like even with just
2,000 neutron histories per cycle. However, the pin-wise fast flux is clearly non-
normal when too few source neutrons per cycle are used. This can be seen in Fig. A.2
presenting the average pass rate which is calculated as an average of the means of
the pin-wise pass values. With 2,000 source neutrons per cycle, the average pass
rates of the normality tests are zero, but with 10,000 and 50,000 source neutrons
per cycle, they increase to around 0.5 and 0.8, respectively. The standard deviations
of the average pass rates are reasonably small, which means that the means of the
pin-wise pass values don’t change much from run to run. The differences between
the normality tests’ pass rates of the average and pin-wise fluxes are caused by
the different detector volumes. When the number of neutron histories per cycle
is small, the number of recorded scores per pin in the cladding is not enough to
form a normal distribution. The total number of recorded scores in the cladding is
sufficient, however.

The effect of the detector volume can also be seen with the estimates of fast flux in
the inner and outer moderator channel walls. When the number of neutron histories
per cycle is small, the normality tests’ pass rates of the fast flux in the smaller volume
inner channel walls (Fig. A.3) are lower than in the larger volume outer channel walls
(Fig. A.4). In the inner channel walls, the pass rates increase from around 0.4 to
0.9 when the number of histories per cycle is increased from 2,000 to 50,000. In the
outer channel walls the increase is smaller, from around 0.8 to 0.9.

The pass rates of the implicit, collision and analog estimates of keff are presented in
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Fig. A.5, A.6 and A.7 in Appendix A, respectively. There are no major differences in
the pass rates between the estimates, and the number of inactive cycles and source
neutrons per cycle don’t have much of an effect on the pass rates. The pass rates of
the D’Agostino–Pearson test are between 0.9 and 1 in all cases, while the pass rates
of the Shapiro–Wilk test are slightly lower.

The pass rates of the analog estimates of the prompt and delayed neutron keff are
illustrated in Fig. A.8 and A.9, respectively. The number of neutron histories per
cycle has a clear impact on the normality pass rates of the delayed neutron keff .
With 2,000 source neutrons per cycle, the Shapiro–Wilk test’s pass rate is close to
zero and D’Agostino–Pearson test’s is around 0.1. With 10,000 source neutrons per
cycle, the normality tests’ pass rates are increased to between 0.7 and 0.8, and with
50,000 source neutrons per cycle, to above 0.8. The drift-in-mean pass rate is close
to unity regardless of the number of neutron histories per cycle. The pass rates of
the prompt neutron keff behave like the pass rates of the total keff .

To summarize the results of the statistical tests, the number of neutron histories
per cycle must be above 50,000 to produce adequate statistics for the calculated
fast flux estimates and for the analog estimate of prompt neutron keff . The number
of inactive cycles didn’t have any major effect on the pass rates. The pass rates
of the Shapiro–Wilk test were lower than the ones of the D’Agostino–Pearson test
in most cases, which was expected due to the error in the p-value calculation. The
pass rates of the drift-in-mean test were close to unity in all cases, meaning that the
distributions of the tested variables were stable.

7.2 Underestimation of variance

The underestimation of variance was studied for the pin-wise estimates of the fast
neutron flux in cladding. The ratio of the real and the apparent standard deviation
fσ was calculated as presented in Sec. 3.3 using the standard deviations and flux
estimates of the 50 simulations.

In Fig. 7.2, the average of the pin-wise values of fσ is plotted as a function of the
number of inactive cycles for the tested number of neutron histories per cycle. The
average value of fσ is close to unity in all cases. Neither the number of inactive
cycles nor the number of neutron histories per cycle have any significant effect on
fσ. The standard deviation of fσ is quite stable, which means that the variation
between the pin-wise values of fσ doesn’t change much from case to case. The spatial
distribution of the pin-wise fσ was also random-like in all the tested configurations.
In conclusion, the apparent variance of the pin-wise fast flux is very close to the true
variance in this test problem.
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Figure 7.2: Average of the pin-wise fσ versus the number of inactive cycles. The points
are adjusted on the horizontal axis in order to clarify the error bars.
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8 Slab test problem

In this section, the statistical tests are studied using a slab geometry with a strongly
non-stationary source distribution. The motif for this case is to see how well the
tests perform when keff is changing during the simulation. The chosen geometry
for this case was a 300 × 300 cm square consisting of five fuel regions. Two of the
regions consisted of natural UO2 fuel and the rest had UO2 fuel enriched to 3.35, 3.5
and 3.65 wt-% 235U. A reflective boundary condition was used in both dimensions,
which means that neutrons were diverted back to the geometry from the boundaries.
The initial source distribution was set by a point source in the centre of the fuel
region 1. The geometry is presented in Fig. 8.1.

The non-stationary source distribution combined with the fuel regions of different
enrichment ratios should result in increasing keff as the simulation proceeds. This
behaviour should lead to a non-normal keff distribution if the number of inactive
cycles is not too large. After a sufficient number of inactive cycles, the source
distribution should be converged and hence keff should be normally distributed. In
order to see how the statistical tests perform, the slab case was run using 1, 10, 25,
50, 100, 200, 400, 800, 1,600, 3,200, 8,000 and 14,000 inactive cycles. The number
of active cycles was 3,000 and the number of source neutrons per cycle 10,000 in
each case. 50 independent simulations were run for each case, and the pass rates of
the statistical tests were calculated for the analog, implicit and collision estimates
of total keff and for the analog estimates of prompt and delayed neutron keff .

To illustrate the evolution of the source distribution, a simulation with 1 inactive
and 14,000 active cycles was run in which the relative fission rate distribution was
plotted after the selected numbers of cycles. The plots are presented in Fig. 8.2.
During the first steps of the simulation, the distribution is concentrated close to the
initial point source, as can be seen from Fig. 8.2a and 8.2b. After 25-200 cycles
(Fig. 8.2c–8.2f), the distribution begins to smooth out in the fuel region 1. Some
of the neutrons born in the fuel regions 1 and 2 travel to the region 3 which starts
to produce neutrons (Fig. 8.2g). Similarly, the neutrons born mainly in the regions
3 and 4 will reach the region 5, which also begins to generate neutrons (Fig. 8.2h–
8.2i). Because the region 5 contains the highest enriched fuel, it begins to dominate
the fission rate distribution when the source starts to convergence (Fig. 8.2j–8.2l).
It should be noted that Fig. 8.2 illustrates the typical observed source convergence.
In some simulation runs, however, the source distribution resembled Fig. 8.2j even
after 14,000 cycles.

The pass rates of the statistical tests performed on the estimates of keff are plotted
in Fig. 8.3. The pass rates of the implicit (Fig. 8.3a) and the collision estimates
(Fig. 8.3b) are very similar. Between 1 and 200 inactive cycles, the normality tests
give a pass rate of around 0.1 and the drift-in-mean test gives a pass rate of zero.
These results are expected, as it’s clear from Fig. 8.2a–8.2f that the source has
not converged when the collecting of the statistics is started. When the number of
inactive cycles is increased from 400 to 1,600, the pass rates increase from below
0.1 to around 0.6. At this interval, the source distribution begins to shift to the
left side of the geometry (Fig. 8.2g–8.2i), which means that more and more runs are
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Figure 8.1: The slab geometry. The UO2 fuel regions are 1: 3.35 wt-% 235U, 2: natural
uranium, 3: 3.5 wt-% 235U, 4: natural uranium and 5: 3.65 wt-% 235U. The initial point
source is marked as a red circle in the fuel region 1.

likely to pass the tests. As already noted, in some of the simulation runs the source
distribution convergence was either faster or slower than in the case of Fig. 8.2,
and therefore some runs pass the tests and others don’t at this interval. When the
number of inactive cycles is 3,200 and above, the pass rate of the drift-in-mean test
is close to unity and the pass rates of the normality tests are around 0.9.

The pass rates of the normality tests in the analog estimate (Fig. 8.3c) differ signifi-
cantly from the implicit and collision estimates. Between 10 and 200 inactive cycles,
the pass rates of the normality tests are already around 0.6. Above 400 cycles, the
pass rates are over 0.8 and approach to around 0.9 as the source converges. The
drift-in-mean test, however, doesn’t show this kind of behaviour, and it’s very alike
in all three estimates. The drift-in-mean test was studied in more detail by plotting
histograms of the first and second halves of the cycle-wise values of the analog es-
timate of keff . The histograms showed that the keff distribution was really drifting
when the test failed, which confirms that the test gave reliable results in the studied
case. An example of a passed and a failed histogram is given in Fig. 8.4.

The pass rates of the analog estimate of prompt neutron keff (Fig. 8.5a) are quite
similar to the ones of the analog estimate of total keff . The pass rates of the analog
estimate of delayed neutron keff (Fig. 8.5b) are very different, however. The normal-
ity tests give a zero pass rate in all points, whereas the pass rate of the drift-in-mean
test increases from around 0.6 to close to unity as the source converges. Histogram
plots of the delayed neutron keff showed that the distributions were right-skewed
and also quite stable during the active cycles, which confirms that the outputs of
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Figure 8.2: The relative fission power in the slab case after (a) 1, (b) 10, (c) 25, (d) 50,
(e) 100, (f) 200, (g) 400, (h) 800, (i) 1,600, (j) 3,200, (k) 8,000 and (l) 14,000 cycles. The
figures were plotted in a single simulation with 10,000 source neutrons per cycle.

the statistical tests were correct.

In summary, the Shapiro–Wilk and D’Agostino–Pearson tests gave similar pass rates
in all the cases. The pass rates of the Shapiro–Wilk test were slightly lower on
average, which was most likely due to the error in the p-value calculation discussed
in Sec. 7.1. The drift-in-mean test was evidently stricter than the normality tests
when the source hadn’t converged. The analog estimate of keff was clearly more
normally distributed than the implicit and collision estimates when the source hadn’t
converged. The reason for the difference is somehow related to the way the estimates
are calculated, but the exact analysis of this phenomenon is left outside of this work.
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Figure 8.3: Pass rates of the statistical tests for the (a) implicit, (b) collision and (c)
analog estimates of keff as a function of number of inactive cycles.
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Figure 8.4: Example histograms of the first and second halves of the analog estimates of
keff . The drift-in-mean test passes in (a) and fails in (b).
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Figure 8.5: Pass rates of the statistical tests for analog estimates of (a) prompt neutron
and (b) delayed neutron keff as a function of number of inactive cycles.
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9 Pin-cell array test problem

In this test problem, the underestimation of variance and the statistical tests are
studied in an infinite array of irradiated light water reactor (LWR) fuel pins. The
problem is defined as “Pin-cell array with irradiated fuel” in Ref. [35] and it contains
three cases, each having a different fuel profile. The case selected for this test (case
2.2. in Ref. [35]) represents an axially asymmetric fuel composition, for which it
should be difficult to determine when the source has converged into a stationary
distribution. This case has also been used to test the underestimation of variance in
MCNP5 and KENO Monte Carlo transport codes [12]. In addition to the asymmetric
fuel composition, a homogeneous fuel configuration is also studied.

The horizontal and vertical cross sections of the test geometry are presented in
Fig. 9.1. Reflective boundary conditions were used in the horizontal directions and
a vacuum boundary condition in the vertical direction. The temperature used for
the fuel, moderator and cladding was 300 K. The thermal scattering data used for
the moderator was evaluated at 293.6 K.

The underestimation of variance was studied using the estimate of the neutron flux,
which was tallied in 50 equal-sized volumes spanning the axial length of the fuel on
an eight-group energy grid given in table 9.1. 50 independent simulations were run
for the tested configurations, and the ratios of the real and the apparent standard
deviations were calculated for the flux tallies. The statistical tests were studied by
calculating their pass rates for the flux tallies and for the estimates of keff .

9.1 Homogeneous fuel pin

In the homogeneous fuel pin configuration, all the fuel regions shown in Fig. 9.1b
contained the same fuel, namely UO2 enriched to 1.0 wt-% 235U. The enrichment
ratio was selected so that the estimate of keff would be close to unity. The minimum
and maximum estimates of keff from all the runs of different test configurations were
around 1.0390 and 1.0397.

Three sets of cases with 50,000, 100,000 and 250,000 source neutrons per cycle were
studied. In each set, the tested numbers of inactive cycles were 10, 25, 50, 100, 400
and 1,600. The batch means method discussed in Sec. 3.3 was studied separately
by using 2, 4 and 8 cycles per batch with 400 inactive cycles and 100,000 neutron
histories per cycle. The number of active cycles in all these cases was 1,000.

Fig. 9.2a illustrates the mean flux profiles of the energy groups taken over the fluxes
of 50 simulation runs. The energy groups 6, 7 and 8 have the highest fluxes, while
the groups 3, 4 and 5 have the lowest. The mean relative statistical errors of the
fluxes are presented in Fig. 9.2b which shows that the maximum errors are obtained
at the ends of the pin and the minimum errors at the centre. The mean flux and
error profiles are symmetrical in all the energy groups. However, the flux and error
profiles of individual runs were not all symmetrical, e.g. some flux profiles were right-
or left-skewed. It was observed that increasing the number of inactive cycles up to
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(a) (b)

Figure 9.1: Geometry of the fuel pin used in the pin-cell array test problem. Figure (a)
presents the horizontal cross section and (b) the vertical cross section [35].

100 decreased the mean relative error.

9.1.1 Results of the statistical tests

The pass rates of the D’Agostino–Pearson test performed on the flux estimates are
given in Fig. B.1, B.2 and B.3 in Appendix B as as a function of the axial position of
the pin for the cases with 50,000, 100,000 and 250,000 source neutrons, respectively.
With 50,000 source neutrons per cycle, the pass rates of all the energy groups are
peaked when the number of inactive cycles is 10. The pass rates of the energy
groups 3, 4, and 5 are non-zero at the centre, unlike the pass rates of the other
groups. When the number of inactive cycles is increased to 25, the pass rates are
still close to zero near the ends, but non-zero at the centre in all the energy groups.
When the number of inactive cycles is 50 and above, the peaks have disappeared,
and the maximum pass rate is obtained at the centre and the minima at the ends in
all the energy groups. The maximum pass rate is around 0.8 in all the groups and
the minimum pass rate is between 0 and 0.2 depending on the group.

When the number of neutron histories per cycle is increased to 100,000, the peaks
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Table 9.1: Energy grid used in the pin-cell array test problem.

Energy group Lower boundary (MeV) Upper boundary (MeV)

1 1.0× 10−11 5.0× 10−8

2 5.0× 10−8 1.5× 10−7

3 1.5× 10−7 2.75× 10−7

4 2.75× 10−7 6.25× 10−7

5 6.25× 10−7 3.0× 10−6

6 3.0× 10−6 1.7× 10−2

7 1.7× 10−2 8.2× 10−1

8 8.2× 10−1 20
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Figure 9.2: (a) The flux profiles of the eight energy groups and (b) their relative statistical
errors in the homogeneous fuel pin case. The plots are averages of 50 independent sim-
ulations which used 1,600 inactive and 1,000 active cycles with 250,000 neutron histories
per cycle.

of the D’Agostino–Pearson test’s pass rates become narrower, and it takes more
inactive cycles for the peaks to disappear. For example, when the number of inactive
cycles is 50, the pass rates of the energy groups 1, 2, 6, 7 and 8 are clearly peaked
(Fig. B.2c), unlike in the case with 50,000 source neutrons (Fig. B.1c). The energy
groups 3, 4 and 5 have slightly higher pass rates than the other groups, except near
the ends of the pin where their pass rates are close to zero. The pass rate profiles
seem to be converged after 100 inactive cycles. The maximum pass rates are around
0.9 which are obtained close to the centre of the pin.

The peaks of the pass rates become even narrower when the number of neutron
histories per cycle is increased to 250,000, and they retain their shapes longer than
with 100,000 source neutrons per cycle. Again, the pass rate profiles converge after
100 inactive cycles. The pass rates are increased most in the energy groups 3, 4 and
5, which have maximum pass rates of above 0.9. At the ends, the pass-rates of the
groups 3, 4 and 5 are clearly larger than with 50,000 and 100,000 source neutrons
per cycle, with a value of about 0.4. The energy groups 1, 2, 6, 7 and 8 have their
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maximum pass rates of around 0.8 at the centre, while their minimum pass rates
are obtained at the axial positions of around 70 cm and 300 cm.

A possible explanation to the peaks observed in the D’Agostino–Pearson test’s pass
rates is that the initial flat source distribution coincides reasonably well with the
final distribution at the locations of the peaks. Therefore, the flux distribution
doesn’t vary much at these locations, and the distribution is more normal than
in the other parts of the pin. When the number of neutron histories per cycle is
increased, the resolution of the source distribution increases, which means that the
coinciding parts are narrowed and thus, the peaks become narrower.

The small pass rates of the D’Agostino–Pearson test close to the ends of the pin
in the energy groups 3, 4 and 5 are most likely caused by poor sampling. This is
because these groups have the lowest fluxes which minimum values are obtained at
the ends. Also, increasing the number of neutron histories per cycle increased the
pass rates most at the ends of the pin in these groups.

The pass-rates of the drift-in-mean test performed on the flux estimates are presented
in Fig. B.4–B.6 in Appendix B. The pass rates are very low in every case, regardless
of the number of neutron histories per cycle. The pass rates increase only slightly
with the number of inactive cycles up to 100 cycles. Above 100 inactive cycles, the
maximum pass rates are obtained at the ends and close to the centre of the pin.
Fig. B.7, which illustrates the average pass rates taken over the total pass rates of
the simulation runs, shows that the standard deviation of the average drift-in-mean
pass rate is very large in most cases. This tells that some runs gave high drift-in-
mean pass rates while others gave very low. For example, of the 50 runs of the
case with 250,000 source neutrons per cycle and 400 inactive cycles, the maximum
drift-in-mean pass rate of all the flux tallies was 0.87 in one run and the minimum
was 0.03 in another run. Clearly, the converged source is difficult to obtain in some
runs, which was already observed by investigating the flux profiles. Because the
pass rates of the independent runs differ so much from each other, the cycles were
very likely strongly correlated. Another observation from Fig. B.7 is that there is
some variation in the pass rates of the normality tests as well, though it is smaller
than the variation in the drift-in-mean test. Fig. B.7 also shows the already noted
observation that the pass rates of the normality tests increase with the number of
neutron histories per cycle.

The statistical tests performed on the estimates of keff behave quite well in most
cases (Fig. B.8–B.10 in Appendix B). In general, the pass rates of the Shapiro–Wilk
test are in most cases between 0.85 and 0.95 and the pass rates of the D’Agostino–
Pearson test are above 0.9. The differences between the pass rates of the normality
tests are most likely due to the error in the p-value calculation discussed in Sec. 7.1.
The pass rates of the drift-in-mean test are in most cases above 0.95. The most
notable effect of the number of neutron histories per cycle and the number of inactive
cycles can be seen with the implicit estimate of keff (Fig. B.8). When the number
of inactive cycles is small, the pass rates of all the tests decrease as the number
of neutron histories per cycle is increased. Using 10 inactive cycles, the pass rates
of the normality tests and the drift-in-mean test drop from 0.8 to zero and 0.2,
respectively, when the number of histories per cycle is increased from 50,000 to
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250,000. The pass rates increase with the number of inactive cycles and converge
to 0.9 and above after 100 inactive cycles. Similar but more modest behaviour can
be seen with the drift-in-mean test in the collision and analog estimates of keff , and
also in the analog estimate of prompt neutron keff (Fig. B.11). The pass rates of the
normality tests performed on the analog estimate of delayed neutron keff (Fig. B.12)
seem to increase slightly as the number of source neutrons is increased.

9.1.2 Underestimation of variance

Fig. B.13, B.14 and B.15 in Appendix B present fσ of the flux tallies as a function
of the axial position of the pin for the cases with 50,000, 100,000 and 250,000 source
neutrons per cycle, respectively. The shared feature in all the cases is that fσ obtains
its minimum values at the centre and at the ends of the fuel pin. Between the ends
and the centre, fσ has peaks which shape depends on the number of inactive cycles.
When the number of inactive cycles is small, the peaks are higher and narrower,
especially when the number of source neutrons per cycle is 100,000 and 250,000.
The distribution of fσ is not symmetrical in general, for example in Fig. B.15e the
left-side peak is strongly right-skewed. The energy groups 1, 2, 6, 7 and 8 produce
the highest values of fσ, which vary from around 3 to 14, depending on the case and
the axial location. The energy groups 3, 4 and 5 produce the lowest values, which
vary from around 2 to 10. The number of source neutrons per cycle doesn’t seem
to have a significant effect on the magnitude of fσ.

Increasing the number of cycles used per batch decreases the underestimation of
the variance, which can be seen in Fig. 9.3. As the number of cycles used for each
batch is increased from 1 to 8, the maximum value of fσ drops from around 13 to
5. Therefore, the batch means method can be used for obtaining a better estimate
of the variance.

9.2 Heterogeneous fuel pin

In this case, the pin contains asymmetrically positioned fuel regions of different
burn-ups. The ends of the fuel pin consist of short, low-burnup regions which are
separated by a long, high-burnup region. The fuel profile is given in table 9.2 and the
fuel compositions are presented in table C.1 in Appendix C. Four cases with different
number of neutron histories per cycle were studied. In three of them, which had
10,000, 50,000 and 250,000 histories per cycle, the number of inactive cycles was
300 and the number of active cycles was 1,000. The fourth case had 1,600 inactive
and 2,000 active cycles with 500,000 source neutrons per cycle. The statistical tests
were studied only in the first three cases due to an error in the input file of the case
with 500,000 source neutrons.

The mean flux profiles and the mean relative statistical errors taken over 50 runs
are plotted in Fig. 9.4 for the case with 500,000 neutron histories. The flux is very
low at the bottom of the fuel pin, and the maximum flux is obtained close to the
top of the pin. The relative error obtains its maximum at the bottom of the pin.
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Figure 9.3: The ratio of the real and the apparent standard deviation of the total flux for
the eight energy groups in the homogeneous fuel pin case using (a) 1, (b) 2, (c) 4 and (d)
8 cycles for each batch.

The energy groups 6, 7 and 8 have the highest fluxes whereas the groups 3 and 4
have the lowest.

9.2.1 Results of the statistical tests

The very low flux at the bottom of the pin results in small number of recorded scores
at the region. This can be seen from Fig. C.1 in Appendix C, which illustrates the
pass rates of the D’Agostino–Pearson test. The pass rates are non-zero only in the
high-flux region. In some runs, no scores were recoded at the bottom of the pin, and
therefore the pass rates couldn’t be calculated at the region. With 50,000 source
neutrons per cycle, the pass rates of the energy groups 3, 4 and 5 are between 0.6
and 0.8 in the high-flux region, while the other groups have their maximum values
between around 0.8 and 1. Increasing the number of neutron histories per cycle
broadens the non-zero region and also increases the pass rates of the energy groups
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Table 9.2: Fuel pin composition in the heterogeneous fuel pin case [35].

Fuel region Fuel material

1 B21G
2 B24G
3 B30G
4 B40G
5 B55G
6 B55G
7 B40G
8 B30G
9 B24G
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Figure 9.4: (a) The flux profiles of the eight energy groups and (b) their relative statistical
errors in the heterogeneous fuel pin case. The plots are averages of 50 independent sim-
ulations which used 1,600 inactive and 2,000 active cycles with 500,000 neutron histories
per cycle.

3, 4 and 5 to the same level with the other groups. The energy groups 3, 4 and 5 have
slightly narrower non-zero region in each case. Similar results were also obtained
with the Shapiro–Wilk test.

The drift-in-mean test (Fig. C.2) behaves very differently from the D’Agostino–
Pearson test. The pass rates are non-zero in the whole region in which all the runs
produced statistics. The number of source neutrons per cycle doesn’t have any
significant effect on the pass rates, with the exception that it broadens the region
producing statistics. All the energy groups obtain their maximum pass rates of
around unity in the high-flux region. The energy groups 3, 4 and 5 have higher
overall pass rates than the other groups in every case.

The pass rates of the statistical tests performed on the estimates of keff are presented
in Fig. C.3. The pass rates of the normality tests are relatively stable with all
estimates, and most of the pass rates are above 0.9. The pass rates of the drift-in-
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Figure 9.5: The ratio of the real and the apparent standard deviation of the total flux for
the eight energy groups in the heterogeneous fuel pin case using (a) 10,000, (b) 50,000, (c)
250,000 and (d) 500,000 neutron histories per cycle.

mean test are close to unity with the collision and analog estimates, while with the
implicit estimate the pass rates are between 0.9 and 0.95. The effect of the number
of neutron histories per cycle is seen in the analog estimate of delayed neutron keff

(Fig. C.4b), for which the pass rates of the normality tests are around 0.3 when the
number of histories per cycle is 10,000. The pass rates increase to around 0.8 when
the number of histories per cycle is increased to 50,000 and above.

9.2.2 Underestimation of variance

The ratio of the real and the apparent standard deviation fσ is plotted in Fig. 9.5
for the tested numbers of source neutrons per cycle. In all the cases, fσ obtains its
maximum close to the bottom and minimum near the top of the pin. The energy
groups 3, 4 and 5 have the lowest values in all the cases. The increase in the
number of neutron histories per cycle decreases the value of fσ near the bottom of
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the pin, but above 100 cm fσ is quite stable. With 10,000 source neutrons per cycle,
the maximum value of fσ is around 15, whereas with 500,000 neutrons, it drops to
around 4. The minimum value of fσ is close to unity in all the cases. The 50,000 and
250,000 source neutrons cases were repeated three times in order to see how much
fσ varies. With 50,000 source neutrons per cycle, the obtained maximum values of
fσ were around 7, 10 and 15, whereas with 250,000 source neutrons per cycle, the
maximum values were all around 7. This implies that there are larger variations in
fσ when the number of source neutrons per cycle is small.

The results imply that the underestimation of variance in this case is due to poor
sampling in the low-flux region at the bottom of the pin. As the number of neutron
histories per cycle is increased, more neutrons are sampled in the low-flux region
and thus, more statistics are collected. However, the results differ from the ones
presented in Ref. [12], in which the underestimation of variance was studied with
MCNP5 and KENO using the same case and parameters. With 10,000 histories
per cycle, the results are comparable, but with 50,000 and 250,000 source neutrons
per cycle, the maximum value of fσ is much lower with MCNP (below 2.5 and 0.6,
respectively) and with KENO (below 1.5 and 0.4, respectively). The differences
in the results are possibly due to differences in the standard deviation estimators.
For example, KENO uses an iterative approach and lag covariance data to estimate
the variance [36]. Nevertheless, the authors of Ref. [12] also concluded that the
underestimation of the variance in this case is due to poor sampling in the low-flux
region.
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10 Conclusions

In this work the statistical tests, namely the Shapiro–Wilk and D’Agostino–Pearson
normality tests and the drift-in-mean test, were implemented in Serpent. The tests
can be used for detecting a non-converged neutron source distribution and poor
sampling which can result in inaccurate estimates of keff and reaction rates. The
statistical tests were studied using four test problems: the BWR lattice problem,
the slab case and the two pin-cell array cases. In addition to the statistical tests,
the underestimation of variance was studied using the BWR and the pin-cell array
cases.

The Shapiro–Wilk and the D’Agostino–Pearson tests behaved similarly in most of
the tested cases. When the problem was well-behaved, i.e. the source distribution
had converged and the number of neutron histories per cycle was large enough, the
pass rates of the D’Agostino–Pearson test were usually between 0.9 and 1 with a
significance level of 0.05. Due to an error in the p-value calculation, the pass rates
of the Shapiro–Wilk test were lower in general.

In the tested cases, low pass rates of the normality tests were caused by poor sam-
pling of source neutrons and non-converged source distributions. In the BWR lattice
case, the pass rates of the normality tests were low in small-volume tally regions
when the number of neutron histories per cycle was small. In the heterogeneous fuel
pin case, the normality tests failed in the bottom of the fuel pin, where the flux was
very low. In both of these cases, the pass rates of the normality tests increased with
the number of source neutrons per cycle.

In the slab test problem, the statistical tests were studied using a strongly non-
stationary source distribution. The pass rates of the normality tests were close to
zero with the implicit and collision estimates of keff when the source hadn’t been
converged, and increased close to unity when the source started to converge. The
normality tests’ pass rates increased also in the homogeneous fuel pin case with the
number of inactive cycles up to a certain level. The drift-in-mean test, however,
proved to be a better tool for detecting a non-converged source distribution. In
the slab case the drift-in-mean test was stricter than the normality tests when the
source hadn’t been converged. In the homogeneous fuel pin case, the pass rates of
the drift-in-mean test were much lower than the ones of the normality tests, and they
also varied a lot from run to run. These results imply that the source convergence
was difficult to obtain in some runs of the homogeneous fuel pin case, and that the
cycles were strongly correlated.

The underestimation of variance was studied in the BWR lattice case using the
estimates of pin-wise fast flux. The ratio of the real and the apparent standard
deviation fσ was close to unity even with a small number of neutron histories per
cycle, so the uncertainty underestimation was no major problem in this case.

The underestimation of variance caused by inter-cycle correlations proved to be a
major issue in the homogeneous fuel pin case. The maximum observed value of fσ
was close to 15 with 250,000 neutron histories per cycle and 1,600 inactive cycles.
Neither the number of neutron histories per cycle nor the number of inactive cycles
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had a consistent effect on the maximum value of fσ. However, increasing the number
of cycles used per batch from one to eight decreased the maximum value of fσ down
to 5. Therefore, the batch means method can be used for obtaining a better estimate
of the variance. Increasing the number of cycles used per batch above eight should
decrease the underestimation even further. In other studies hundreds of cycles per
batch have been used [15,16].

In the heterogeneous fuel pin case the underestimation of variance was caused by
poor sampling in the low-flux region at the bottom of the fuel pin. By increasing the
number of neutron histories per cycle from 10,000 to 500,000, the maximum value
of fσ obtained at the bottom of the bin decreased from 15 to 4. The minimum value
of fσ, which was obtained in the high-flux region at the top of the bin, was close to
unity regardless of the number of neutron histories per cycle.
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Figure A.1: Pass rates of the statistical tests performed on detector 1 values (average fast
flux in cladding) using (a) 2,000, (b) 10,000 and (c) 50,000 neutron histories per cycle.
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Figure A.2: Average pass rates of the statistical tests performed on detector 2 values (pin-
wise fast flux in cladding) using (a) 2,000, (b) 10,000 and (c) 50,000 neutron histories per
cycle.
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Figure A.3: Pass rates of the statistical tests performed on detector 3 values (fast flux in
inner moderator channel wall) using (a) 2,000, (b) 10,000 and (c) 50,000 neutron histories
per cycle.
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Figure A.4: Pass rates of the statistical tests performed on detector 4 values (fast flux in
outer channel wall) using (a) 2,000, (b) 10,000 and (c) 50,000 neutron histories per cycle.
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Figure A.5: Pass rates of the statistical tests performed on the implicit estimate of keff

using (a) 2,000, (b) 10,000 and (c) 50,000 neutron histories per cycle.
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Figure A.6: Pass rates of the statistical tests performed on the collision estimate of keff

using (a) 2,000, (b) 10,000 and (c) 50,000 neutron histories per cycle.
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Figure A.7: Pass rates of the statistical tests performed on the analog estimate of keff

using (a) 2,000, (b) 10,000 and (c) 50,000 neutron histories per cycle.
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Figure A.8: Pass rates of the statistical tests performed on the analog estimate of prompt
neutron keff using (a) 2,000, (b) 10,000 and (c) 50,000 neutron histories per cycle.
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Figure A.9: Pass rates of the statistical tests performed on the analog estimate of delayed
neutron keff using (a) 2,000, (b) 10,000 and (c) 50,000 neutron histories per cycle.
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B Homogeneous fuel pin
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Figure B.1: Pass rates of the D’Agostino–Pearson test for the flux tallies as a function
of the axial position of the pin using 50,000 neutron histories per cycle. The numbers of
inactive cycles used were (a) 10, (b) 25, (c) 50, (d) 100, (e) 400 and (f) 1,600.
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Figure B.2: Pass rates of the D’Agostino–Pearson test for the flux tallies as a function of
the axial position of the pin using 100,000 neutron histories per cycle. The numbers of
inactive cycles used were (a) 10, (b) 25, (c) 50, (d) 100, (e) 400 and (f) 1,600.
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Figure B.3: Pass rates of the D’Agostino–Pearson test for the flux tallies as a function of
the axial position of the pin using 250,000 neutron histories per cycle. The numbers of
inactive cycles used were (a) 10, (b) 25, (c) 50, (d) 100, (e) 400 and (f) 1,600.
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Figure B.4: Pass rates of the drift-in-mean test for the flux tallies as a function of the
axial position of the pin using 50,000 neutron histories per cycle. The numbers of inactive
cycles used were (a) 10, (b) 25, (c) 50, (d) 100, (e) 400 and (f) 1,600.
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Figure B.5: Pass rates of the drift-in-mean test for the flux tallies as a function of the
axial position of the pin using 100,000 neutron histories per cycle. The numbers of inactive
cycles used were (a) 10, (b) 25, (c) 50, (d) 100, (e) 400 and (f) 1,600.
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Figure B.6: Pass rates of the drift-in-mean test for the flux tallies as a function of the
axial position of the pin using 250,000 neutron histories per cycle. The numbers of inactive
cycles used were (a) 10, (b) 25, (c) 50, (d) 100, (e) 400 and (f) 1,600.
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Figure B.7: Average pass rates for the flux tallies using (a) 50,000, (b) 100,000 and (c)
250,000 neutron histories per cycle. The points are adjusted on the horizontal axis in
order to clarify the error bars.
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Figure B.8: Pass rates of the statistical tests performed on the implicit estimate of keff

using (a) 50,000, (b) 100,000 and (c) 250,000 neutron histories per cycle.
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Figure B.9: Pass rates of the statistical tests performed on the collision estimate of keff

using (a) 50,000, (b) 100,000 and (c) 250,000 neutron histories per cycle.
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Figure B.10: Pass rates of the statistical tests performed on the analog estimate of keff

using (a) 50,000, (b) 100,000 and (c) 250,000 neutron histories per cycle.
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Figure B.11: Pass rates of the statistical tests performed on the analog estimate of prompt
neutron keff using (a) 50,000, (b) 100,000 and (c) 250,000 neutron histories per cycle.
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Figure B.12: Pass rates of the statistical tests performed on the analog estimate of delayed
neutron keff using (a) 50,000, (b) 100,000 and (c) 250,000 neutron histories per cycle.
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Figure B.13: The ratio of the real and the apparent standard deviation of the total flux as
a function of the axial position of the pin for the eight energy groups using 50,000 neutron
histories per cycle. The numbers of inactive cycles used were (a) 10, (b) 25, (c) 50, (d)
100, (e) 400 and (f) 1,600.
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Figure B.14: The ratio of the real and the apparent standard deviation of the total flux
as a function of the axial position of the pin for the eight energy groups using 100,000
neutron histories per cycle. The numbers of inactive cycles used were (a) 10, (b) 25, (c)
50, (d) 100, (e) 400 and (f) 1,600.
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Figure B.15: The ratio of the real and the apparent standard deviation of the total flux
as a function of the axial position of the pin for the eight energy groups using 250,000
neutron histories per cycle. The numbers of inactive cycles used were (a) 10, (b) 25, (c)
50, (d) 100, (e) 400 and (f) 1,600.
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C Heterogeneous fuel pin

Table C.1: Atom densities of the fuel types used in the heterogeneous fuel pin case [35].

Isotope B21G (21.57 B24G (24.023 B30G (30.580 B40G (40.424 B55G (54.605
GWD/MTU) GWD/MTU) GWD/MTU) GWD/MTU) GWD/MTU)

234U 6.4862× 10−6 6.2881× 10−6 5.7868× 10−6 5.1152× 10−6 4.3280× 10−6

235U 5.6757× 10−4 5.2562× 10−4 4.2455× 10−4 3.0002× 10−4 1.7108× 10−4

236U 9.4556× 10−5 1.0155× 10−4 1.1763× 10−4 1.3534× 10−4 1.4897× 10−4

238U 2.1732× 10−2 2.1693× 10−2 2.1585× 10−2 2.1413× 10−2 2.1142× 10−2

238Pu 1.1322× 10−6 1.4876× 10−6 2.7262× 10−6 5.3656× 10−6 1.0471× 10−5

239Pu 1.2591× 10−4 1.3161× 10−4 1.4249× 10−4 1.5064× 10−4 1.5300× 10−4

240Pu 2.6395× 10−5 2.9965× 10−5 3.9140× 10−5 5.1484× 10−5 6.5540× 10−5

241Pu 1.3614× 10−5 1.5953× 10−5 2.1863× 10−5 2.9175× 10−5 3.6032× 10−5

242Pu 2.2623× 10−6 3.0335× 10−6 5.6472× 10−6 1.0893× 10−5 2.0303× 10−5

241Am 4.0266× 10−6 4.7603× 10−6 6.6579× 10−6 9.0866× 10−6 1.1405× 10−5

243Am 2.6222× 10−7 3.9809× 10−7 9.7353× 10−7 2.5108× 10−6 6.1550× 10−6

237Np 6.8089× 10−6 7.9041× 10−6 1.0948× 10−5 1.5602× 10−5 2.1806× 10−5

95Mo 3.1530× 10−5 3.4781× 10−5 4.3130× 10−5 5.4806× 10−5 6.9892× 10−5

99Tc 3.0319× 10−5 3.3465× 10−5 4.1531× 10−5 5.2746× 10−5 6.6975× 10−5

101Ru 2.7452× 10−5 3.0548× 10−5 3.8751× 10−5 5.0881× 10−5 6.7875× 10−5

103Rh 1.7260× 10−5 1.9008× 10−5 2.3371× 10−5 2.9057× 10−5 3.5406× 10−5

109Ag 1.8879× 10−6 2.2230× 10−6 3.1774× 10−6 4.7134× 10−6 6.9836× 10−6

133Cs 3.3140× 10−5 3.6549× 10−5 4.5257× 10−5 5.7263× 10−5 7.2263× 10−5

147Sm 6.4488× 10−6 6.9339× 10−6 8.0315× 10−6 9.2075× 10−6 1.0106× 10−5

149Sm 1.9390× 10−7 1.9611× 10−7 1.9935× 10−7 1.9993× 10−7 1.9259× 10−7

150Sm 7.1174× 10−6 8.0472× 10−6 1.0496× 10−5 1.3997× 10−5 1.8627× 10−5

151Sm 5.7531× 10−7 6.0064× 10−7 6.6160× 10−7 7.3765× 10−7 8.1779× 10−7

152Sm 3.0178× 10−6 3.3473× 10−6 4.1844× 10−6 5.3316× 10−6 6.7637× 10−6

143Nd 2.5793× 10−5 2.8067× 10−5 3.3502× 10−5 3.9984× 10−5 4.5992× 10−5

145Nd 1.8633× 10−5 2.0504× 10−5 2.5263× 10−5 3.1783× 10−5 3.9892× 10−5

153Eu 2.0026× 10−6 2.3329× 10−6 3.2546× 10−6 4.6705× 10−6 6.5858× 10−6

155Gd 1.1986× 10−7 1.4386× 10−7 2.2155× 10−7 3.6871× 10−7 6.0862× 10−7

O (natural) 4.6219× 10−2 4.6219× 10−2 4.6219× 10−2 4.6219× 10−2 4.6219× 10−2
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Figure C.1: Pass rates of the D’Agostino–Pearson test for the flux tallies as a function of
the axial position of the pin using (a) 10,000, (b) 50,000 and (c) 250,000 neutron histories
per cycle. Some simulation runs didn’t produce any statistics at the bottom of the fuel
pin and therefore these locations have been left blank.
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Figure C.2: Pass rates of the drift-in-mean test for the flux tallies as a function of the
axial position of the pin using (a) 10,000, (b) 50,000 and (c) 250,000 neutron histories per
cycle. Some simulation runs didn’t produce any statistics at the bottom of the fuel pin,
and therefore these locations have been left blank.



RESEARCH REPORT VTT-R-00371-14
67 (67)

(a)

104 105 106
0.85

0.9

0.95

1

Number of histories per cycle

P
a
ss

ra
te

SW

DP

DIM

(b)

104 105 106
0.85

0.9

0.95

1

Number of histories per cycle

P
as

s
ra

te

SW

DP

DIM

(c)

104 105 106
0.85

0.9

0.95

1

Number of histories per cycle

P
as

s
ra

te

SW

DP

DIM

Figure C.3: Pass rates of the statistical tests for the (a) implicit, (b) collision and (c)
analog estimate of keff .
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Figure C.4: Pass rates of the statistical tests for the analog estimates of (a) prompt neutron
keff and (b) delayed neutron keff .


