
Kraken workshop
Introduction to the Cerberus based 
reactor simulator for fuel cycle analyses

14/05/2022 VTT – beyond the obvious



14/05/2022 VTT – beyond the obvious

 Introduction

 Capabilities of the simulator

 Examples on calculation sequences the simulator automates

 Requirements for running a simulation

 Demo: First operating cycle of a SMR core

 Conclusions

Outline



14/05/2022 VTT – beyond the obvious

 A relatively simple fuel cycle simulator leveraging the Python API Cerberus 

provides for communicating with individual solvers

 Included in the Cerberus package as a module cerberus.simulator

 Utilizes the following solvers:
• Neutronics: Ants or Serpent

• Thermal hydraulics: Kharon

• Fuel behaviour: SuperFINIX

 Demonstrates how common calculation sequences can be easily 

packaged into their own modules using the Python API

 The simulator has been used mostly in the Finnish district heating reactor 

project [1,2]

Introduction

[1] J. Leppänen et al. “A Finnish district heating reactor: Background and general overview”. 

Proceedings of ICONE-28, August 4-6, 2021, Virtual Conference, USA. 

[2] J. Leppänen et al. “A Finnish district heating reactor: Neutronics design and fuel cycle simulations”. 

Proceedings of ICONE-28, August 4-6, 2021, Virtual Conference, USA. 



14/05/2022 VTT – beyond the obvious

 Reactivity control based on:
• Control rod movement (multiple simple algorithms)

• Boron in the coolant

• Inlet temperature

• Inlet flowrate

• Reactor power

 Automatic evaluation of:
• Various reactivity coefficients (Uniform/distributed Doppler, moderator etc.)

• Control rod worths

• Shutdown margins

 Switching from Ants based simulation to Serpent based simulation or vice 

versa requires only minor modifications

Capabilities of the simulator



14/05/2022 VTT – beyond the obvious

Steps:

1. Get initial keff from the neutronics solver

2. Switch critical boron iteration off in the neutronics solver if it was on

3. Fix Xenon distribution in the neutronics solver

4. Store initial temperature field for the neutronics solver

5. Modify the temperature field for the neutronics solver (increase or decrease fuel 

temperatures by a fixed amount ΔT)

6. Update the neutronics solution

7. Get new keff from the neutronics solver

8. Calculate uniform Doppler coefficient based on the initial keff, new keff and ΔT

9. Restore initial temperature field for the neutronics solver

10. Switch critical boron iteration on if it was on initially

11. Unfix xenon distribution

Automated calculation sequence: 
Uniform Doppler coefficient



14/05/2022 VTT – beyond the obvious

Steps:
1. Switch critical boron iteration off in the neutronics solver if it was on

2. Store initial Xenon distribution for the neutronics solver

3. Fix Xenon distribution to zero in the neutronics solver

4. Store initial coolant temperature/density and fuel temperature fields for the neutronics solver

5. Set coolant temperature/density and fuel temperature fields for the neutronics solver to cold conditions

6. Store initial positions of the control rod groups

7. Fully insert all control rod groups

8. Find the control rod with the highest worth by repeating the following procedure for each rod x:
1. Fully extract rod x

2. Update the neutronics solution

3. Get new keff from the neutronics solver

4. Calculate reactivity and compare to current maximum reactivity

5. Fully insert rod x

9. Cold shutdown margin is the negative of the maximum reactivity obtained from the previous step

10. Restore initial Xenon distribution for the neutronics solver

11. Restore initial coolant temperature/density and fuel temperature fields for the neutronics solver

12. Restore initial positions of the control rod groups

13. Switch critical boron iteration on if it was on initially

14. Unfix xenon distribution

Automated calculation sequence: 
Cold shutdown margin



14/05/2022 VTT – beyond the obvious

 Solver executables (Ants or Serpent, Kharon, SuperFINIX)

 Input files for each solver

 Interpolation matrices used in transferring field data between the solvers 

when solving the coupled burnup problem

 A Python script to run the simulation. The following is defined in the script:
• Solvers/solver input files

• Interpolation

• Control rods

• Depletion steps

• Convergence criteria for the coupled problem (and neutronics if using Ants)

• Type of reactivity control

• Options for reactivity coefficient calculation

• etc.

Requirements for running a simulation



14/05/2022 VTT – beyond the obvious

 Same district heating SMR core model as in the previous 

Cerberus presentation

 Coupled burnup calculation at nominal power over the first 

operating cycle up to 2750 EFPD (~ 21.8 MWd/(kgU))

 Linear extrapolation/Linear interpolation as burnup 

algorithm

 Evaluated at each time point:
• Reactivity coefficients:

❖ UDP: Uniform Doppler temperature variation

❖ DDP: Distributed Doppler temperature variation

❖ MTC: Uniform moderator inlet temperature variation

❖ BOR: Uniform moderator boron content variation

❖ POW: Distributed system power variation

• Shutdown margins:

❖ Hot instantaneous

❖ Cold long-term

• Control rod group worths

Demo: First operating cycle of a SMR core



14/05/2022 VTT – beyond the obvious

 The reactor simulator module is capable of basic modelling of fuel cycles 

by utilizing VTT’s Ants/Serpent, Kharon and SuperFINIX solvers

 The simulator does not read a separate input file and the calculation 

options are defined in the Python script used to run the simulation
• The solvers require their own input files!

 The simulator module is included in the Cerberus Python package

Summary



Riku Tuominen

riku.tuominen@vtt.fi

@VTTFinland www.vtt.fi


