
Kraken workshop
Python level introduction to coupled 
calculations with Kraken using Cerberus

Ville Valtavirta

24/05/2022 VTT – beyond the obvious



24/05/2022 VTT – beyond the obvious

 Cerberus Python package:
• Idea

• Capabilities:

• Solver()

• Transferrable()

• About Field()s and Mesh()es

• Interpolator()

 Setting up coupled calculations with Cerberus:
• Critical boron iteration.

• Control rod iteration.

• Transient simulations.

• Burnup calculations.

Outline



Cerberus Python package

24/05/2022 VTT – beyond the obvious



24/05/2022 VTT – beyond the obvious

• Code agnostic multi-physics driver of the Kraken framework.

• Provides high-level API for solvers, fields and variables on 

Python side.

• Python makes building coupled calculation schemes simple and 

fun.

• Cerberus aims to hide most of the boring and technical stuff

from the user.
• E.g. actual communications between processes, copying files and creating

folders.

• Strikes a balance between simplicity and flexibility.

• Aimed for expert users, who can package common calculation

sequences into further Python packages/modules for non-

expert users.

Cerberus Python package

A schematic representation of the plans for the

completed Kraken framework. Finnish solver modules

developed at VTT are shown in yellow, while potential

state-of-the-art third party solvers to be coupled are

shown in orange.



24/05/2022 VTT – beyond the obvious

• Code agnostic multi-physics driver of the Kraken framework.

• Provides high-level API for solvers, fields and variables on 

Python side.

• Python makes building coupled calculation schemes simple and 

fun.

• Cerberus aims to hide most of the boring and technical stuff

from the user.
• E.g. actual communications between processes, copying files and creating

folders.

• Strikes a balance between simplicity and flexibility.

• Aimed for expert users, who can package common calculation

sequences into further Python packages/modules for non-

expert users.

Cerberus Python package



The Solver class of Cerberus

24/05/2022 VTT – beyond the obvious

 All solvers participating in the calculation are

based on the Solver class that provides methods

such as

• Solver.initialize()

• Solver.get_transferrable()

• Solver.solve()

• Solver.set_current_time()

• Solver.suggest_next_time()

• Solver.move_to_time()

• Solver.write_restart()

• Solver.read_restart()

• Etc.

The user does not need to know what 

happens “under the hood” when calling one 

of these methods from Python.

All solvers provide the same functionality to 

Python even if actual implementation in the 

solver module may differ.

Cerberus does not know (or care) which 

solver handles neutronics and which thermal 

hydraulics.

The expert user, of course, does care.



24/05/2022 VTT – beyond the obvious

 The transferrable superclass covers all input and 

output data needs of the solver that can be 

transferred between the solver and Cerberus.

 Transferrable.communicate(): Exchange data with 

solver.

 Transferrable.write_simple(): Write data to file.

 Transferrable.write_foam(): Write data to Foam files.

 Transferrable.value_vec: Current values of data.

 Transferrable.get_conv_crit(): Evaluate convergence 

criterion between current and previous values.

 …

Transferrables in Cerberus



24/05/2022 VTT – beyond the obvious

 Field() and Variable() are sub-classes of 

Transferrable().

 Field is a (physical) dataset with a spatial 

representation (mesh).

 Variable is a more general set/piece of data. 

Often single valued.

Transferrables in Cerberus



24/05/2022 VTT – beyond the obvious

On Field()s and Mesh()es

 Field data on Python side (as seen by the user) is in 

SI-units and uses a default (global) indexing for the

mesh.

 Conversions between solver (local) and Cerberus 

(global) units and indexings are handled automatically

by Cerberus based on data Cerberus obtains from the

solver.

 Cerberus output can be written to files separately

using the global and local indexings (typically only

global indexing required). Global indexing for mesh type 3: One axial layer of 

structured x-type 60 degree hexagonal mesh.



24/05/2022 VTT – beyond the obvious

On Field()s and Mesh()es

 Meshes may be used for automatic generation of

interpolations between fields in the future. At the

moment, interpolations need to be pre-generated by

the user.

 Mesh information is also written in files and can be re-

created in postprocessing using

krakentools.kraken.Mesh class, which offers some

useful functionalities for plotting etc.

 Automated output to FoamFiles is partially supported

with additional support added in the future.

Cerberus will automatically handle 

conversions between solver indexing to

global indexing to provide one uniform 

indexing scheme across all solvers and 

fields on the Python side.



24/05/2022 VTT – beyond the obvious

The Interpolator() class

 Handles data transfer between two Field()s using a 

chosen interpolation scheme:

• One-to-one mapping.

• User supplied interpolation matrix Ӗ𝐴 that describes

the production of the destination data field ҧ𝑑 from

the source data field ҧ𝑠.
ҧ𝑑 = Ӗ𝐴 ҧ𝑠

𝑑1
⋮

𝑑𝑁𝑑

=

𝑎1→1 … 𝑎𝑁𝑠→1
⋮ ⋱ ⋮

𝑎1→𝑁𝑑
… 𝑎𝑁𝑠→𝑁𝑑

𝑠1
⋮
𝑠𝑁𝑠

Mesh 1 Mesh 2



24/05/2022 VTT – beyond the obvious

The Interpolator() class

 Handles data transfer between two Field()s using a 

chosen interpolation scheme:

• One-to-one mapping.

• User supplied interpolation matrix Ӗ𝐴 that describes

the production of the destination data field ҧ𝑑 from

the source data field ҧ𝑠.
ҧ𝑑 = Ӗ𝐴 ҧ𝑠

𝑑1
𝑑2
𝑑3
𝑑4
𝑑5
𝑑6
⋮
𝑑16

=

𝑎1→1 𝑎2→1 𝑎3→1 𝑎4→1
𝑎1→2 𝑎2→2 𝑎3→2 𝑎4→2
𝑎1→3 𝑎2→3 𝑎3→3 𝑎4→3
𝑎1→4 𝑎2→4 𝑎3→4 𝑎4→4
𝑎1→5 𝑎2→5 𝑎3→5 𝑎4→5
𝑎1→6 𝑎2→6 𝑎3→6 𝑎4→6
⋮ ⋮ ⋮ ⋮

𝑎1→16 𝑎2→16 𝑎3→16 𝑎4→16

𝑠1
𝑠2
𝑠3
𝑠4

Mesh 1 Mesh 2
Power (W)



24/05/2022 VTT – beyond the obvious

The Interpolator() class

 Handles data transfer between two Field()s using a 

chosen interpolation scheme:

• One-to-one mapping.

• User supplied interpolation matrix Ӗ𝐴 that describes

the production of the destination data field ҧ𝑑 from

the source data field ҧ𝑠.
ҧ𝑑 = Ӗ𝐴 ҧ𝑠

𝑑1
𝑑2
𝑑3
𝑑4
𝑑5
𝑑6
⋮
𝑑16

=

0.25 0 0 0
0.25 0 0 0
0 0.25 0 0
0 0.25 0 0

0.25 0 0 0
0.25 0 0 0
⋮ ⋮ ⋮ ⋮
0 0 0 0.25

𝑠1
𝑠2
𝑠3
𝑠4

Mesh 1 Mesh 2
Power (W)



24/05/2022 VTT – beyond the obvious

The Interpolator() class

 Handles data transfer between two Field()s using a 

chosen interpolation scheme:

• One-to-one mapping.

• User supplied interpolation matrix Ӗ𝐴 that describes

the production of the destination data field ҧ𝑑 from

the source data field ҧ𝑠.
ҧ𝑑 = Ӗ𝐴 ҧ𝑠

𝑑1
𝑑2
𝑑3
𝑑4
𝑑5
𝑑6
⋮
𝑑16

=

0.25 0 0 0
0.25 0 0 0
0 0.25 0 0
0 0.25 0 0

0.25 0 0 0
0.25 0 0 0
⋮ ⋮ ⋮ ⋮
0 0 0 0.25

𝑠1
𝑠2
𝑠3
𝑠4

Mesh 1 Mesh 2
Power (W)

mapping.txt:
1 0.25
1 0.25
2 0.25
2 0.25
1 0.25
1 0.25
…
4 0.25



Setting up coupled calculations 
with Cerberus

24/05/2022 VTT – beyond the obvious



24/05/2022 VTT – beyond the obvious

Reactor model for investigation

 Early design for a district heating SMR core.
• Low power (50 MW), low temperature (360 K inlet), 

low pressure (< 10 bar).

• 37 fuel assemblies.

• 150 cm active height.

 Simplified from original:
• Removed spacer grids

• Simplified control rods

• Moved to boron based reactivity control

 Intended to test the simulator capabilities of 

Kraken.

 Details of analyses published in

Valtavirta, V., Tuominen, R.

“A simple reactor core simulator based on VTT's Cerberus Python package”

ANS M&C 2021, April 11-15, 2021, Raleigh, NC



24/05/2022 VTT – beyond the obvious

Reactor model for investigation

B

C C

C A C

B A A B

C A C

C C

B

Control rod groups in the reactor core.

 Early design for a district heating SMR core.
• Low power (50 MW), low temperature (360 K inlet), 

low pressure (< 10 bar).

• 37 fuel assemblies.

• 150 cm active height.

 Simplified from original:
• Removed spacer grids

• Simplified control rods

• Moved to boron based reactivity control

 Intended to test the simulator capabilities of 

Kraken.

 Details of analyses published in

Valtavirta, V., Tuominen, R.

“A simple reactor core simulator based on VTT's Cerberus Python package”

ANS M&C 2021, April 11-15, 2021, Raleigh, NC



24/05/2022 VTT – beyond the obvious

Reactor model for investigation

 Early design for a district heating SMR core.
• Low power (50 MW), low temperature (360 K inlet), 

low pressure (< 10 bar).

• 37 fuel assemblies.

• 150 cm active height.

 Simplified from original:
• Removed spacer grids

• Simplified control rods

• Moved to boron based reactivity control

 Intended to test the simulator capabilities of 

Kraken.

 Details of analyses published in

Valtavirta, V., Tuominen, R.

“A simple reactor core simulator based on VTT's Cerberus Python package”

ANS M&C 2021, April 11-15, 2021, Raleigh, NC



Applied calculation chains

24/05/2022 VTT – beyond the obvious

Calculation setup:

 Neutronics (Serpent OR Ants):
• Continuous energy Monte Carlo OR

• Eight group nodal diffusion with ¼ assembly 

subnodalization.

 Thermal hydraulics (Kharon):
• Porous medium closed channel single phase.

• One channel per assembly.

 Fuel behaviour (SuperFINIX):
• Traditional 1.5 dimensional approach.

• One representative fuel rod per assembly.

 Coupled calculation:
• Coupled fields exchanged at assembly level.

The Kraken based core simulator in this work used

SuperFINIX for fuel behaviour, Kharon for thermal

hydraulics and either Serpent or Ants for the

neutronics.



Applied calculation chains

24/05/2022 VTT – beyond the obvious

Calculation setup:

 Neutronics (Serpent OR Ants):
• Continuous energy Monte Carlo OR

• Eight group nodal diffusion with ¼ assembly 

subnodalization.

 Thermal hydraulics (Kharon):
• Porous medium closed channel single phase.

• One channel per assembly.

 Fuel behaviour (SuperFINIX):
• Traditional 1.5 dimensional approach.

• One representative fuel rod per assembly.

 Coupled calculation:
• Coupled fields exchanged at assembly level.

Neutronics

Thermal 

hydraulics

Fuel 

behaviour

Clad T



Available inputs

24/05/2022 VTT – beyond the obvious

 group_constants/new8g_noppr.xs

 inputs/
• ants/
• kharon/
• serpent/
• superfinix/
• mappings/



Available inputs

24/05/2022 VTT – beyond the obvious

 group_constants/new8g_noppr.xs

 inputs/
• ants/

• Ants8g.inp
• includes/

• control_rods.inc
• core.inc
• fuel_assemblies.inc
• radial_reflector.inc

• kharon/
• serpent/
• superfinix/
• mappings/



Available inputs

24/05/2022 VTT – beyond the obvious

 group_constants/new8g_noppr.xs

 inputs/
• ants/
• kharon/

• Kharon.inp
• serpent/
• superfinix/
• mappings/



Available inputs

24/05/2022 VTT – beyond the obvious

 group_constants/new8g_noppr.xs

 inputs/
• ants/
• kharon/
• serpent/

• Serpent.inp
• includes/

• …
• superfinix/
• mappings/



Available inputs

24/05/2022 VTT – beyond the obvious

 group_constants/new8g_noppr.xs

 inputs/
• ants/
• kharon/
• serpent/
• superfinix/

• SuperFINIX.inp
• finixfiles/

• finix.options
• finix.rods
• finix.scenario

• mappings/



Available inputs

24/05/2022 VTT – beyond the obvious

 group_constants/new8g_noppr.xs

 inputs/
• ants/
• kharon/
• serpent/
• superfinix/
• mappings/

• ants_to_kharon.txt
• ants_to_sf.txt
• kharon_to_ants.txt
• kharon_to_sf.txt
• sf_to_ants.txt
• sf_to_neutronics.txt



First step: ARO HZP CBC

24/05/2022 VTT – beyond the obvious

 All rods out (ARO) hot zero power (HZP) 

critical boron concentration.

 Initialize neutronics solver and set boron 

iteration on.

 Set HZP state.

 Converge neutronics solution.

 Get and store results.



Second step: ARO HFP CBC

24/05/2022 VTT – beyond the obvious

 All rods out (ARO) hot full power (HFP) 

critical boron concentration.

 Initialize required solvers.

 Supply initial guess for fields.

 Converge coupled solution.

 Get and store results.



Third step: ARO HFP CBC + control rod 
worths

24/05/2022 VTT – beyond the obvious

 Initialize required solvers.

 Supply initial guess for fields.

 Converge coupled solution.

 Evaluate control rod worths.



Final step: Coupled burnup calculation with 
full power (constant extrapolation)

24/05/2022 VTT – beyond the obvious

 Initialize required solvers.

 Supply initial guess for fields.

 For each time point:
• Converge coupled solution.

• Time integrate solution to next time point.



What about Serpent?

24/05/2022 VTT – beyond the obvious

 Serpent is still a Solver.

 Field and variable names are different:
• Ants_iv_xenon_state

• sss_iv_fixed_xenon

• Ants_ov_boron

• sss_ov_critical_boron

 Internal workings of solvers are different.

 Meshing of fields may be different:
• Ants meshing based on node structure.

• Serpent meshing more freely chosen 

(multi-physics interface based).

 The same calculation can be repeated with 

Serpent (including the same variations).
• See also next presentation.



Summary

24/05/2022 VTT – beyond the obvious

 Cerberus offers a high level Python API for 

solvers and their fields and variables in Kraken.

 Coupled calculation chains can be easily 

created in Python.

 More complex calculation chains quickly get 

tedious to write from scratch.
• Common calculation sequences and sub-sequences 

can be packaged into their own modules.

 Next presentation on the cerberus.simulator

module is one example.



Ville Valtavirta

Ville.Valtavirta@vtt.fi

Kraken@vtt.fi

@VTTFinland www.vtt.fi


