

Investigating Variable Fidelity Monte Carlo with Serpent Fixed Source Mode

7th International Serpent User Group Meeting Gainesville, Florida, USA November 6-9, 2018

Mikolaj Adam Kowalski

DATE: 7.11.2017

Engineering - Energy, Fluid dynamics and Turbo-machinery

Presentation Outline

- 1. What is "Variable Fidelity" Monte Carlo?
- 2. MONK 10A and WIMS
- 3. Methodology
- 4. Accuracy of simple approach
- 5. Scope for improvement
- 6. Conclusions

Variable Fidelity Monte Carlo

Approximations to Monte Carlo:

- In Angle
- In Energy (MG Data)
- In Space (Homogenisation)

- Approximation in angle is usually determined by Nuclear Data
- Homogenisation and CE Data is not practical

Monte Carlo Fidelity Levels

I Continuous Energy Heterogenous Geometry

> Multi-Group Heterogenous Geometry

> Multi-Group Homogeneous Geometry

Calculation in 2nd level: ~ 5-6 Speed-up [KENO]^[1] Calculation in 3rd level: ~ 5-7 Speed-up [MORA]^[2]

[1] Goluoglu, Sedat, Lester M. Petrie, Michael E. Dunn, Daniel F. Hollenbach, and Bradley T. Rearden. "Monte Carlo Criticality Methods and Analysis Capabilities in SCALE." Nuclear Technology, 2011.

[2] Leppänen, Jaakko. "On the Feasibility of a Homogenised Multi-Group Monte Carlo Method in Reactor Analysis." Casino-Kursaal Conference Center, Interlaken, Switzerland, 2008.

Variable Fidelity Monte Carlo

Question:

Is it possible to accelerate MC solution by using lower fidelity in regions where accuracy is less important?

i.e. Temperature margin calculation

→ accuracy matters for pin cells

close to a limit

MONK 10A and WIMS

Serpent does not support MG data → Another code was needed

MONK 10A:

- MC code developed by ANSWERS Software
- Designed for criticality calculations
- Some support for reactor physics problems (more in 10B)
- Support of MG data
- Integrated into WIMS 10

WIMS 10:

- Lattice physics code suite
- MoC and Collision Probability
- Equivalence and Sub-Group Resonance treatment

WIMS 10

Approximating "Variable Fidelity"

Methodology:

- 1. Perform low fidelity eigenvalue calculation
- 2. Sample Current crossing the boundary
- 3. Replace part of the geometry with current source and vacuum BC
- 4. Run Fixed Source Calculation

Limitations:

- 1. Only systems with k=1
- 2. Only current spectrum was sampled

MG Problem (MONK 10A)

CE Problem (Serpent)

Serpent Fixed Source Calculation

Test Case

Geometry Schematic

Geometry was based on PWR:

- Pin radius = 0.3951 cm
- Pitch = 1.26 cm
- Water density $\rho \approx 0.75 \frac{g}{cm^3}$
- Boron at 1470 ppm

Row-by-Row Fuel Composition

Left Assembly

Right Assembly (Used in Serpent Calculation)

MONK 10A Multi-Group Spectra

Homogeneous geometry:

Large Homogenisation error

Heterogenous geometry:

- Thermal peak error
- Resonance errors
- Hardened spectrum error (criticality error)

MONK 10A NOVICE method → sub-group sampling

Fission Rate Distribution

Homogenous Geometry:

Large Error (thermal neutrons)

Heterogenous Geometry:

- Error in first row
- Error is larger for CE sampled spectra

Thermal pin-cell corners accumulation

Pin-cell Neutron Distribution

Heterogenous geometry error is caused by distribution of thermal neutrons

Isolating MG error – Source "Translation"

"Translated" Source Fission Rate

Homogeneous geometry:

Error Increases

Heterogeneous geometry:

Error is contained within 0.5%

"Translated" Source Capture Rate

No resonance flux dips → Large capture error

"Albedo" Correction

Approximation with "translated" sources:

- Start with uniform distribution in lethargy
- 2. Run Fixed Source and get samples of leakage current
- 3. "Translate" Source using leakage current from previous calculation
- 4. Repeat steps 2-3

"Albedo" Correction – CE sampled MG spectrum

Spectrum was sampled in CE Serpent Reference calculation (Serpent Source case)

2σ Error ≈ 0.2%

- Significant reduction of capture error
- No statistically significant change in power

"Albedo" Correction –MG spectrum

- No capture error peaking close to the boundary
- "Bowing" error in power and capture
- Likely caused by criticality error of MG spectrum

Heterogeneous MG Spectrum

Capture Rate Relative Error

Pin Row

Conclusions

Conclusions:

- At the fidelity level boundary:
 - Homogenised to heterogeneous transition → requires correction (ADFs)
 - Spatial distribution of thermal neutrons causes large error
 - Errors due to MG representation of spectrum are small
 - "Albedo" correction → significantly improves capture accuracy
- "Variable Fidelity" will probably deliver at least 1% accuracy in power

Further work:

- Implement environment for combined MG-CE calculations
- Move to 2D and 3D problems
- Investigate using deterministic calculation as IV fidelity level

Thank you for your attention!

