

Introduction to Sensitivity and Uncertainty Analysis in Reactor Physics

Maria Pusa

September 16th, 2011

Outline

- Sensitivity analysis
- Uncertainty analysis
- Methods
- Application to reactor physics
- Example calculation

Sensitivity

- Starting point: mathematical model containing uncertain parameters and response dependent on this model
- Question: If one of the parameters is perturbed, how will this affect the response?
- Mathematical definition:
 - Simplest case: local sensitivity of response R with respect to parameter α at point $\alpha=\alpha^0$ is the derivative

$$s_{\alpha} = \left(\frac{dR}{d\alpha}\right)_{\alpha = \alpha^0} \tag{1}$$

 This generalizes easily to more general mathematical systems (e.g. parameters that are functions and responses that are functionals)

Sensitivity Analysis

- Objective: Compute derivatives with respect to all parameters of interest
- Brute-force approach:
 - Variate the parameters one-by-one and compute the response
 - Inefficient when there are several parameters
- Deterministic approach:
 - Formulate the problem mathematically and compute the derivatives
 - Very efficient if a mathematical concept called adjoint is utilized

Uncertainty

- Starting point: a mathematical model containing uncertain parameters and response dependent on this model
- Question: How to quantify the uncertainty related to the parameters?
 - Bayesian probability definition: knowledge about a parameter presented as probability distribution
 - Variance (one parameter) or covariance (several parameters) of the distribution may be chosen as the descriptive statistic for the uncertainty

Uncertainty Analysis

- Objective: Compute the probability distribution of the response based on the probability distributions of the uncertain parameters
- Determination of the exact distribution usually extremely difficult
 - ⇒ Compute only variance/covariance due to uncertain parameters OR estimate distribution based on simulations
- Inaccuracy related to numerical methods or approximation errors not included in classical uncertainty analysis

Uncertainty Analysis Methods

- Deterministic approach:
 - 1. Calculate response sensitivity vector *s*
 - 2. Linearize response

$$R \approx s\alpha$$
 (2)

3. Compute respective variance/covariance

$$\operatorname{Cov}[R] \approx \operatorname{Cov}[s\alpha] = s\operatorname{Cov}[\alpha]s^T$$
 (3)

- Statistical approach
 - 1. Sample points from distribution $p(\alpha)$
 - 2. Compute R corresponding to each sample
 - 3. Compute uncertainty estimates based on simulated p(R)

Application to Reactor Physics

- *Mathematical model*: transport (or diffusion) equation, potentially combined with a depletion model
- Responses: multiplication factor, reaction rates, homogenized cross-sections etc.
- *Uncertain parameters:* neutron cross-sections, initial nuclide concentrations, system dimensions etc.

Application to Reactor Physics: Adjoint-based Approach

- + Computationally very efficient
- + Yields detailed sensitivity profiles
- Best-suited for deterministic codes
- Requires extensive modifications in the code
- Has not been applied to depletion problems

Application to Reactor Physics: Statistical Approach

- + Well-suited for both deterministic and Monte Carlo codes
- + Code can be treated as a black box (depletion does not cause any difficulties!)
- + Yields additional information about the distribution p(R) (besides variance/covariance)
- Computationally expensive
- Does not yield sensitivity information

S&U analysis with Monte Carlo method

- Statistical approach
 - Sample from Gaussian distribution based on covariance data
 - Total Monte Carlo:
 - * A.J. Koning and D. Rochman, *Towards sustainable nuclear energy:*Putting nuclear physics to work, Ann. Nucl. Energy, **35**, 11, 2024–2030 (2008)
 - Suitable for burnup calculations
- Adjoint-based approach
 - exploit the physical interpretation of adjoint:
 - * Brian C. Kiedrowski, Forrest B. Brown and Paul P. H. Wilson, Adjoint-Weighted Tallies for k-Eigenvalue Calculations with Continuous-Energy Monte Carlo, Nucl. Sci. Eng., 168, 3, 226–141 (2011)
 - Suitable for problems covered by generalized perturbation theory

Example of S&U Calculation

Calculation code: CASMO-4

Source of uncertainty: neutron cross-sections

S&U analysis method: Adjoint-based

Test case: a 7×7 BWR assembly [1]

Rod type	²³⁵ U (wt.%)	Gd ₂ O ₃ (wt.%)	No. of rods
1	2.93	0	26
2	1.94	0	12
3	1.69	0	6
4	1.33	0	1
5A	2.93	3.0	3
6B	2.93	3.0	1

	4	3	3	2	2	2	3	
	3	2	1	1	1	1	2	
	3	1	5A	1	1	5A	1	
	2	1	1	1	1	1	1	
	2	1	1	1	6B	1	1	

K. Ivanov et al., Benchmark for uncertainty analysis in modeling (UAM) for design, operation, and safety analysis of LWRs, Volume I: Specification and

Example: flux and adjoint flux

Example: k_{inf} S&U profiles (1)

- $k_{inf} = 1.1055$
- $\Delta k_{\rm inf}/k_{\rm inf}=0.5076\%$

Nuclide	Param.pair	Rel. sensitivity	Rel. uncertainty
²³⁸ U	$\sigma_{ m c}$, $\sigma_{ m c}$	-2.448×10^{-1}	3.198×10^{-1}
^{235}U	u , $ u$	9.161×10^{-1}	2.720×10^{-1}
^{235}U	$\sigma_{ m c}$, $\sigma_{ m c}$	-1.010×10^{-1}	1.423×10^{-1}
^{235}U	$\sigma_{ m f}$, $\sigma_{ m f}$	4.157×10^{-1}	1.416×10^{-1}
^{238}U	$\sigma_{ ext{s}}$, $\sigma_{ ext{s}}$	-1.499×10^{-2}	1.320×10^{-1}
^{235}U	$\sigma_{ m c}$, $\sigma_{ m f}$		1.242×10^{-1}
^{235}U	χ , χ	9.161×10^{-1}	1.030×10^{-1}
^{238}U	u , $ u$	6.107×10^{-2}	7.102×10^{-2}
^{1}H	$\sigma_{ m c}$, $\sigma_{ m c}$	-1.072×10^{-1}	5.362×10^{-2}
¹ H	$\sigma_{ ext{ iny S}}$, $\sigma_{ ext{ iny S}}$	1.263×10^{-1}	5.061×10^{-2}

Example: k_{inf} S&U profiles (2)

Sensitivity plots

• ²³⁸U capture covariance matrix Energy (eV)

Example: Homogenized two-group cross-section uncertainties

Response R	Value	Relative uncertainty $\frac{\Delta R}{R}$ (%)
$ u\Sigma_{\mathrm{f},1}$	4.976×10^{-3}	8.399×10^{-1}
$ u\Sigma_{\mathrm{f},2}$	6.922×10^{-2}	4.490×10^{-1}
$\Sigma_{\mathrm{a},1}$	7.283×10^{-3}	7.526×10^{-1}
$\Sigma_{ m a,2}$	5.494×10^{-2}	2.122×10^{-1}
$\Sigma_{ m c,1}$	5.348×10^{-3}	1.098×10^{0}
$\Sigma_{\mathrm{c,2}}$	2.653×10^{-2}	5.066×10^{-1}
$\Sigma_{\rm f,1}$	1.935×10^{-3}	5.563×10^{-1}
$\Sigma_{ m f,2}$	2.841×10^{-2}	3.244×10^{-1}

Example: generalized adjoints

Example: S&U profiles for $\nu\Sigma_{\rm f,2}$

• $\nu \Sigma_{\rm f,2} = 6.922 \times 10^{-2}$, relative uncertainty $4.490 \times 10^{-1}\%$

Nuclide	Param. pair	Sensitivity	Contribution to $\frac{\Delta R}{R}$ (%)
²³⁵ U	$\overline{ u},\overline{ u}$	9.996×10^{-1}	3.105×10^{-1}
²³⁵ U	$\sigma_{ m f},\sigma_{ m f}$	7.985×10^{-1}	2.893×10^{-1}
²³⁵ U	$\sigma_{ m f},\sigma_{ m c}$	7.985×10^{-1}	1.134×10^{-1}
²³⁸ U	$\sigma_{ m c},\sigma_{ m c}$	-4.406×10^{-2}	7.257×10^{-2}
²³⁵ U	$\sigma_{ m c},\sigma_{ m c}$	-3.599×10^{-2}	5.613×10^{-2}

Summary

- Sensitivity analysis
 - Adjoint-based approach
 - Brute force method
- Uncertainty analysis
 - Deterministic (requires sensitivities)
 - Statistical sampling
- S&U analysis with Monte Carlo method
 - Statistical sampling based on covariance data
 - Total Monte Carlo
 - Adjoint-based (exploit physical interpretation of adjoint)

