Validation and verification

From Serpent Wiki
Revision as of 23:14, 23 May 2022 by Jaakko Leppänen (Talk | contribs) (References)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

This page collects together all documents related to Serpent validation. The different categories are listed below. Each entry should include one or several references to publicly accessible documents where the results are reported. If you have additional documentation related to an already listed case, you can just add the reference in the list.

Serpent input and output files can be also be provided. When the input consists of multiple files, link to zip or gzip archives.

Criticality

This section lists calculation cases from the International Handbook of Evaluated Criticality Safety Benchmark Experiments (ICSBEP)[1] and other sources. The main (but not only) purpose of the calculations is validation for criticality safety.

ICSBEP Criticality Benchmarks

ICSBEP ID Experiment Description Results Refs. Files Added by Date
HEU-MET-FAST-001 Godiva Bare sphere of highly enriched uranium keff, βeff [2] input JLe / VTT 2015/11/18
HEU-MET-FAST-002 Topsy Highly enriched uranium sphere surrounded by a thick reflector of natural uranium keff, βeff [2] N/A JLe / VTT 2015/11/18
PU-MET-FAST-001 Jezebel Bare sphere of plutonium keff, βeff [2] input JLe / VTT 2015/11/18
PU-MET-FAST-006 Popsy Plutonium sphere surrounded by a thick reflector of natural uranium keff, βeff [2] input JLe / VTT 2015/11/18
U233-MET-FAST-001 Skidoo Bare sphere of U-233 keff, βeff [2] input JLe / VTT 2015/11/18
U233-MET-FAST-006 Flattop23 U-233 sphere surrounded by a thick reflector of natural uranium keff, βeff [2] input JLe / VTT 2015/11/18
IEU-MET-FAST-007 BigTen Large all-uranium-metal cylindrical core surrounded by a thick reflector of natural uranium keff, αR [2] N/A JLe / VTT 2015/11/18
IEU-MET-FAST-010 ZPR-U9 Cylindrical assembly of uranium metal with a thick depleted uranium reflector keff, βeff [2] N/A JLe / VTT 2015/11/18
MIX-MET-FAST-011 ZPR-MOX Cylindrical assembly of mixed fissile plutonium and uranium metal reflected by graphite keff, βeff [2] N/A JLe / VTT 2015/11/18
HEU-MET-INTER-001 ZPR-HEU Highly enriched uranium/iron cylinder reflected by stainless steel keff, βeff [2] N/A JLe / VTT 2015/11/18
PU-MET-INTER-002 ZPR-Pu Cylindrical plutonium/carbon/stainless steel assembly with stainless steel and iron reflectors keff, βeff [2] N/A JLe / VTT 2015/11/18
LEU-SOL-THERM-004 Stacy-029, -033, -046 Water-reflected cylindrical tank with uranyl nitrate solution keff, αR [2] N/A JLe / VTT 2015/11/18
LEU-SOL-THERM-007 Stacy-030 Unreflected cylindrical tank with uranyl nitrate solution keff, αR [2] input JLe / VTT 2015/11/18
LEU-SOL-THERM-016 Stacy-125 Water-reflected slabs of enriched uranyl nitrate solution keff, αR [2] N/A JLe / VTT 2015/11/18
LEU-SOL-THERM-021 Stacy-215 Unreflected cylindrical tank of uranyl nitrate solution keff, αR [2] N/A JLe / VTT 2015/11/18

Other Criticality Experiments

Experiment Description Results Refs. Files Added by Date
SNEAK-7A Unmoderated PuO2/UO2 core with a depleted uranium reflector keff, βeff [2] N/A JLe / VTT 2015/11/18
SNEAK-7B Unmoderated PuO2/UO2 core with a depleted uranium reflector keff, βeff [2] N/A JLe / VTT 2015/11/18
SNEAK-9C1 Unmoderated core UO2 core with a depleted uranium reflector keff, βeff [2] N/A JLe / VTT 2015/11/18
SNEAK-9C2 Unmoderated PuO2/UO2 core with Na and reflected by depleted uranium keff, βeff [2] N/A JLe / VTT 2015/11/18
Masurca-R2 Unmoderated core with enriched uranium fuel surrounded by a UO2–Na mixture blanket and by steel shielding keff, βeff [2] N/A JLe / VTT 2015/11/18
Masurca-Z2 Unmoderated core with plutonium and depleted uranium fuel surrounded by a UO2–Na mixture blanket and by steel shielding keff, βeff [2] N/A JLe / VTT 2015/11/18
FCA-XIX-1 Highly enriched uranium core surrounded by UO2/Na and uranium metal blanket regions keff, βeff [2] N/A JLe / VTT 2015/11/18
FCA-XIX-2 Plutonium/uranium core surrounded by UO2/Na and uranium metal blanket regions keff, βeff [2] N/A JLe / VTT 2015/11/18
FCA-XIX-3 Plutonium core surrounded by UO2/Na and uranium metal blanket regions keff, βeff [2] N/A JLe / VTT 2015/11/18
TCA Light water moderated low-enriched UO2 core in the tank-type critical assembly keff, βeff [2] N/A JLe / VTT 2015/11/18
IPEN Low enriched UO2 fuel rods inside a light water filled tank keff, βeff [2] N/A JLe / VTT 2015/11/18
Winco Slab tank assembly consisted of two thin coaxial slab tanks uranyl nitrate solution keff, αR [2] N/A JLe / VTT 2015/11/18
Sheba-II Enriched uranyl fluoride Solution High-Energy Burst Assembly (SHEBA) keff, αR [2] N/A JLe / VTT 2015/11/18
SHE-8 A hexagonal core with graphite matrix tubes and low enriched uranium fuel dispersed in graphite rods keff, αR [2] N/A JLe / VTT 2015/11/18

Application Specific Validation

Application Description Results Refs. Files Added by Date
SNF wet storage (78 cases) Hexagonal fuel assemblies separated by borated steel and water. keff [3] N/A VVa / VTT 2017/05/02

Research reactors & other experiments

This section collects studies involving full-scale modelling of research reactors and other experimental facilities. The results may include criticality calculations, but also other reactor physics data (flux or power distributions, spectral indices, etc.). Experiments focused on criticality safety validation alone should be included in the section above.

Calculation case Description Refs. Files Added by Date
Full-core burnup calculations for the OPAL research reactor First six operating cycles simulated at INVAP with Serpent 2, and compared to experimental results [4] N/A JLe / VTT 2016/03/02
Triga Mark II benchmark experiments Serpent 2 and MCNP calculations for the Triga Mark II reactor at JSI, Slovenia [5] N/A JLe / VTT 2016/09/16
FREYA fast critical experiments Characterization of the critical VENUS-F cores (SCK.CEN, Belgium) with Serpent 2 in the framework of the FP7 EURATOM project FREYA [6] N/A EF / HZDR 2017/05/15
Prismatic HTGR critical assembly calculations Reactor physics calculations for the VHTRC (JAEA, Japan) critical assembly using Serpent 2 and SCALE/KENO-VI [7] N/A JLe / VTT 2017/05/16
Pebble-bed HTGR critical assembly calculations Criticality calculations for the ASTRA (Kurchatov Institute, Russia) critical assembly using Serpent 2 [8] N/A JLe / VTT 2017/05/16
VVER-1000 mock-up calculations Criticality and other reactor physics calculations calculations for the LR-0 reactor (Rez, Czech Republic) using Serpent 2 [9] N/A JLe / VTT 2017/05/16
VENUS-2 Benchmark Criticality and power distribution, comparison to experimental data an MCNP calculations [10] N/A JLe / VTT 2022/05/22
Reactor dosimetry calculations for FiR 1 Triga Mk-II reactor Comparison of predicted reaction rates of nickel and manganese at 9 different positions to measurements [11] N/A JLe / VTT 2022/05/23
Criticality benchmarks for the Pavia Triga Mk-II reactor Comparison of multiplication factor and control rod calibration curves to measurements [12] N/A JLe / VTT 2022/05/23

Burnup calculations

This section includes validation calculations involving fuel burnup. The results may include material compositions, criticality power distributions, etc. Since experimental data is scarce, also code-to-code comparisons may be included.

Calculation case Description Experimental data Refs. Files Added by Date
LWR-PROTEUS Phase-II calculations Isotopic compositions calculated using Serpent 2, MCNPX and VESTA and compared to experimental data YES [13] N/A JLe / VTT 2017/05/16
2D infinite-lattice PWR assembly burnup calculations (Krško NPP) keff and pin-power distributions calculated using Serpent 1, DRAGON, FA2D and SCALE/NEWT NO [14] N/A JLe / VTT 2017/05/16
Full-core GFR burnup calculations (Allegro) keff, flux spectra and isotopic compositions calculated using Serpent 2 and MONTEBURNS NO [15] N/A JLe / VTT 2017/05/16
Full-core SFR burnup calculations keff , power distribution and isotopic compositions calculated using Serpent 2 and KANEXT NO [16] N/A JLe / VTT 2017/05/16
OECD/NEA Burn-up Credit Criticality Safety Benchmark Phase VII calculations keff and isotopic compositions calculated using Serpent 2 and MCNP6 NO [17] N/A JLe / VTT 2017/05/16
CB6 benchmark on VVER-440 final disposal Decay and criticality calculations, comparison between Serpent 2 and ORIGEN NO [18] N/A JLe / VTT 2017/05/16
AER VVER-440 GD Fuel Burnup Benchmark keff and isotopic compositions calculated using Serpent 2 and compared to benchmark reference results NO [19] N/A JLe / VTT 2017/05/16
OECD/NEA benchmark for VVER-1000 fuel assembly with GD keff and isotopic compositions calculated using Serpent 2 and compared to benchmark reference results NO [19] N/A JLe / VTT 2017/05/16
OECD/NEA benchmark for VVER-1000 fuel assembly with LEU and MOX fuel keff, reactivity coefficients and isotopic compositions calculated using Serpent 2 and SCALE, and compared to benchmark reference results NO [20] N/A JLe / VTT 2017/05/16
OECD/NEA Burn-up Credit Criticality Safety Benchmark Phase III-C keff, isotopic compositions calculated for BWR assemblies with various codes including Serpent 2 with cross comparison. NO [21] N/A VVa / VTT 2020/08/25
SKB Decay heat blind test benchmark Decay heat, mass of 137Cs and 148Nd YES [22] N/A JLe / VTT 2022/05/13

Dynamic simulations and transients

This section includes validation calculations involving time-dependent neutronics and reactor transients.

Calculation case Description Experimental data Refs. Files Added by Date
Serpent-SUBCHANFLOW calculations for the SPERT-IIIE hot full power tests Transient experiments T-84 and T-85 are calculated using pin-by-pin coupling and compared with experimental results YES [23] N/A JLe / VTT 2022/05/23
Serpent-OpenFOAM calculations for the TREAT reactor TREAT M2 transient 2580 YES [24] N/A JLe / VTT 2022/05/23

Fusion

This section includes validation calculations for fusion applications.

Calculation case Description Experimental data Refs. Files Added by Date
Variance reduction and shielding calculations for fusion applications SINBAD and EU DEMO HCPB, comparison to MCNP and experimental data YES [25] N/A JLe / VTT 2022/05/23
Serpent and MCNP calculations for the EU-DEMO BL2017 model EU DEMO HCPB breeding blanket NO [26] N/A JLe / VTT 2022/05/23
Serpent and MCNP fusion neutronics analyses at JET Comparison of fluxes and reaction rates at several positions NO [27] N/A JLe / VTT 2022/05/23

Photon transport

This section is intended for validation studies concerning the photon transport capabilities of Serpent.

Calculation case Description Modelled cases Refs. Files Added by Date
Kansas 60Co gamma-ray skyshine experiment 60Co source placed in a horizontally shielded concrete silo with or without roofing. Exposure rates measured between 30 m and 700 m from the source. Comparisons to experimental data and MCNP6. Experiments 1, 2 and 3. [28] N/A VVa / VTT 2017/01/27
Hupmobile TLD experiment Dose rates from a 137Cs source to TLDs inside a teflon cylinder. Comparisons to MCNP6, no experimental data. One experiment with a 137Cs source. [28] N/A VVa / VTT 2017/01/27
Dose rate from irradiated PWR assemblies Benchmark calculation of gamma dose rate from 1 m distance of PWR-UOX and PWR-MOX assemblies UOX and MOX assembly 30 v and 3.7 v after irradiation. [29] N/A VVa / VTT 2021/01/28
Radiation shielding for neutrons and photons ICSBEP ALARM-benchmarks ALARM-CF-FE-SHIELD-001 and ALARM-CF-PB-SHIELD-001 [30] N/A JLe / VTT 2022/05/23

Direct full core modelling (computational benchmark)

This section is intended for code-to-code validation studies for direct full core (2D or 3D) modelling.

Calculation case Description Modelled cases Refs. Files Added by Date

Direct full core modelling (experimental data)

This section is intended for code-to-code or code-to-experiment validation studies for direct full core (2D or 3D) modelling of real world reactors with experimental data available.

Calculation case Description Modelled cases Refs. Files Added by Date
Khmelnitsky-2 (X2) benchmark Khmelnitsky-2 initial core loading at HZP state. Comparison to experimentally measured data. Measured critical state k-eff, critical boron, ITCs, SCRAM worths, CR group #10 differential and integral worth. [31] - VVa / VTT 2021-06-24

Reduced-order methods

This section is intended for validation studies in which Serpent-generated cross sections are used for nodal diffusion and other reduced-order calculations. The studies may include comparison to experimental data or reference Serpent 3D calculations. Also comparison of group constants calculated by Serpent vs. results by other codes can be included.

Full-core calculations

Calculation case Code sequence Description Results Refs. Files Added by Date
MIT BEAVRS Benchmark Serpent-ARES 1000 MW PWR HZP initial core calculations using nodal diffusion code ARES Power distributions [32] N/A JLe / VTT 2015/11/18
MIT BEAVRS Benchmark Serpent-ARES 1000 MW PWR HFP initial core and burnup calculations using nodal diffusion code ARES Power distributions, control rod bank worths, boron dilution curve [33] input JLe / VTT 2016/08/26

Assembly-level code-to-code comparisons

Calculation case Reference codes Description Refs. Files Added by Date
Standard test cases run for each update MCNP5 PWR, BWR, CANDU, SFR and HTGR calculations using different cross section libraries [34] N/A JLe / VTT 2015/11/18

References

  1. ^ https://www.oecd-nea.org/science/wpncs/icsbep/handbook.html
  2. ^ Leppänen, J., Aufiero, M., Fridman, E., Rachamin, R., and van der Marck, S. "Calculation of effective point kinetics parameters in the Serpent 2 Monte Carlo code." Ann. Nucl. Energy, 65 (2014) 272-279.
  3. ^ Valtavirta, V. "Criticality safety validation of Serpent for nuclear fuel wet storage calculations" Customer Report, VTT-CR-02424-17 (link to report) (2017).
  4. ^ Ferraro, D. and Villarion, E. "Full 3-D core calculations with refueling for the OPAL Research Reactor using Monte Carlo Code Serpent 2." Ann. Nucl. Energy, 92 (2016) 369-377.
  5. ^ Ćalić, D., Žerovnik, G. Trkov, A. and Snoj, L. "Validation of the Serpent 2 code on TRIGA Mark II benchmark experiments." Appl. Radiat. Isot., 107 (2016) 165-170.
  6. ^ Fridman, E., Kochetkov, A., and Krása, A. "Modeling of FREYA fast critical experiments with the Serpent Monte Carlo code." Ann. Nucl. Energy, 108 (2017) 239–252.
  7. ^ Bostelmann, F., Hammer H., Ortensi, J., Strydom G., Velkov, K. and Zwermann, W.. "Criticality calculations of the Very High Temperature Reactor Critical Assembly benchmark with Serpent and SCALE/KENO-VI." Ann. Nucl. Energy, 90 (2016) 343–352.
  8. ^ Rintala, V., Suikkanen, H., Leppänen, J. and Kyrki-Rajamäki, R. "Modeling of realistic pebble bed reactor geometries using the Serpent Monte Carlo code." Ann. Nucl. Energy, 77 (2015) 223-230.
  9. ^ Chersola, D., Mazzini, G., Kostal, M., Miglierini, B., Hrehor, M., Lomonaco, G., Borreani, W. and Ruscak, M. "Application of Serpent 2 and MCNP6 to study different criticality configurations of a VVER-1000 mock-up." Ann. Nucl. Energy, 94 (2016) 109-122.
  10. ^ Ćalić, D., Štancar, Ž. and Snoj, L. "Analysis of VENUS-2 benchmark using Serpent 2 code." Ann. Nucl. Energy., 116 (2018) 334-346.
  11. ^ Viitanen, T. and Leppänen, J. "Validating the Serpent Model of FiR 1 Triga Mk-II Reactor by Means of Reactor Dosimetry." EJP Web conferences, 106 (2016) 03010.
  12. ^ Castagna, C., Chiesa, D., Cammi, A., Boarin, S., Previtali, E., Sisti, M., Nastasi, M., Salvini, A., Magrotti, G. and Prata, M. "A new model with Serpent for the first criticality benchmarks of the TRIGA Mark II reactor." Ann. Nucl. Energy, 113 (2018) 171-176.
  13. ^ Pecchia, M., Wicaksono, D., Grimm, P., Vasilieva, A., Perret, G., Ferroukhi, H and Pautza, A. "Validation of Monte Carlo based burnup codes against LWR-PROTEUS Phase-II experimental data." Ann. Nucl. Energy, 97 (2016) 153-164.
  14. ^ Grgić, D., Jecmenica, R. and Pevec, D. "Lattice codes pin power prediction comparison." Nucl. Eng. Design, 246 (2012) 27-40.
  15. ^ Chersola, D., Lomonaco, G., Marotta, R. and Mazzini, G. "Comparison between SERPENT and MONTEBURNS codes applied to burnup calculations of a GFR-like configuration." Nucl. Eng. Design, 273 (2014) 542-554.
  16. ^ Lopez-Solis, R., François, J., Bastida-Ortiz, G., Becker, M. and Sánchez-Espinoza, V. "Fuel depletion analysis of a small sodium fast reactor with KANEXT and SERPENT." Ann. Nucl. Energy, 98 (2016) 26-35.
  17. ^ Herrero, J., Vasiliev, A., Pecchia, M., Ferroukhi, H. and Caruso, S. "Review calculations for the OECD/NEA Burn-up Credit Criticality Safety Benchmark." Ann. Nucl. Energy, 87 (2016) 48-57.
  18. ^ Lahtinen, T. "Solution of the CB6 benchmark on VVER-440 final disposal using the Serpent reactor physics code." Kerntechnik, 79 (2014) 303-313
  19. ^ Lötsch, T. "Fuel assembly burnup calculations for VVER fuel assemblies with the MONTE CARLO code SERPENT." Kerntechnik, 79 (2014) 295-302.
  20. ^ Mercatali, L., Venturini, A., Daeubler, M. and Sanchez, V. "SCALE and SERPENT solutions of the OECD VVER-1000 LEU and MOX burnup computational benchmark." Ann. Nucl. Energy, 83 (2015) 328-341.
  21. ^ OECD/NEA '"Burn-up Credit Criticality Safety Benchmark Phase III-C "', NEA/NSC/R/(2015)6, (link to report)
  22. ^ Jansson, P. et al. "Blind Benchmark Exercise for Spent Nuclear Fuel Decay Heat." Nucl. Sci. Eng. (preprint, 2022)
  23. ^ Ferraro, D., García, M., Valtavirta, V., Imke, U., Tuominen, R., Leppänen, J. and Sanchez-Espinoza, V. "Serpent/SUBCHANFLOW pin-by-pin coupled transient calculations for the SPERT-IIIE hot full power tests." Ann. Nucl. Energy, 142 (2020) 107387.
  24. ^ Sorrell, N. and Hawari, A. "TREAT M2 experiment modeling for transient benchmark analysis." Ann. Nucl. Energy, 128 (2019) 398-405.
  25. ^ Valentine, A., Worral, R. and Leppänen, J. "Investigation of novel weight window methods in Serpent 2 for fusion neutronics applications." Fusion Eng. Design, 178 (2022) 113090.
  26. ^ Lu, Y., Zhou, G., Hernández, F., Pereslavtsev, P., Leppänen, J. and Ye, M. "Benchmark of Serpent-2 with MCNP: Application to European DEMO HCPB breeding blanket." Fusion Eng. Design, 155 (2020) 111583.
  27. ^ Žohar, A., Štancar1, Z., Batistoni, P., Conroy, S., Snoj, L. and Lengar, I. "Validation of Serpent for Fusion neutronics analysis at JET." EJP Web Conference (PHYSOR 2020), 247 (2021) 18001.
  28. ^ Valtavirta, V. and Tuominen, R. "Validation and verification of the photon transport capabilities in Serpent 2.1.27" Research Report, VTT-R-00494-17 (link to report) (2017).
  29. ^ Eschbach, R., Feng, B., Vezzoni, B., Gabrielli, F., Alvarez-Velarde, F., Léger, V., Rocchi, F., Edwards, G., Dixon, B., Pénéliau, Y., Girieud, R., Häkkinen, S., Viitanen, T., Räty, A., Malambu, E.M. and Cornet, S. "Verification of Dose Rate Calculations for PWR Spent Fuel Assemblies", proceedings of GLOBAL 2017 (paper A-081), September 24-29, 2017, Seoul, Korea.
  30. ^ Häkkinen, S. "Serpent 2 Validation for Radiation Shielding Applications." ASME J. of Nuclear Rad Sci., 8 (2022) 042001.
  31. ^ Bilodid Y., Fridman E., Lötsch, T. "X2 VVER-1000 benchmark revision: Fresh HZP core state and the reference Monte Carlo solution" Ann. Nucl. Energy, 144 (2020) 107558
  32. ^ Leppänen, J., Mattila, R. and Pusa, M. "Validation of the Serpent-ARES code sequence using the MIT BEAVRS benchmark - Initial core at HZP conditions." Ann. Nucl. Energy, 69 (2014) 212-225.
  33. ^ Leppänen, J. and Mattila, R. "Validation of the Serpent-ARES code sequence using the MIT BEAVRS benchmark – HFP conditions and fuel cycle 1 simulation." Ann. Nucl. Energy, 96 (2016) 324-331.
  34. ^ Standard validation cases at Serpent website