Difference between revisions of "Input syntax manual"
From Serpent Wiki
Ana Jambrina (Talk | contribs) (→set bralib) |
(→det (detector definition)) |
||
(737 intermediate revisions by 5 users not shown) | |||
Line 18: | Line 18: | ||
=== branch (branch definition)<span id="branch"></span> === | === branch (branch definition)<span id="branch"></span> === | ||
− | '''branch''' ''NAME'' [ '''repm''' ''MAT<sub>1</sub>'' ''MAT<sub>2</sub>'' ] | + | '''branch''' ''NAME'' [ [[#branch_repm|'''repm''']] ''MAT<sub>1</sub>'' ''MAT<sub>2</sub>'' ] |
− | [ '''repu''' ''UNI<sub>1</sub>'' ''UNI<sub>2</sub>'' ] | + | [ [[#branch_repu|'''repu''']] ''UNI<sub>1</sub>'' ''UNI<sub>2</sub>'' ] |
− | [ '''stp''' ''MAT DENS TEMP THERM<sub>1</sub> SABL<sub>1</sub> SABH<sub>1</sub> THERM<sub>2</sub> SABL<sub>2</sub> SABH<sub>2</sub> ...'' ] | + | [ [[#branch_stp|'''stp''']] ''MAT DENS TEMP THERM<sub>1</sub> SABL<sub>1</sub> SABH<sub>1</sub> THERM<sub>2</sub> SABL<sub>2</sub> SABH<sub>2</sub> ...'' ] |
− | [ '''tra''' ''TGT TRANS'' ] | + | [ [[#branch_tra|'''tra''']] ''TGT TRANS'' ] |
− | [ '''xenon''' ''OPT'' ] | + | [ [[#branch_xenon|'''xenon''']] ''OPT'' ] |
− | [ '''samarium''' ''OPT'' ] | + | [ [[#branch_samarium|'''samarium''']] ''OPT'' ] |
− | [ '''norm''' ''NSF'' ] | + | [ [[#branch_norm|'''norm''']] ''NSF'' ] |
− | [ '''gcu''' ''UNI<sub>2</sub>'' ] | + | [ [[#branch_gcu|'''gcu''']] ''UNI<sub>2</sub>'' ] |
− | [ '''reptrc''' ''FILE<sub>1</sub>'' ''FILE<sub>2</sub>'' ] | + | [ [[#branch_reptrc|'''reptrc''']] ''FILE<sub>1</sub>'' ''FILE<sub>2</sub>'' ] |
− | [ '''var''' ''VNAME VAL'' ] | + | [ [[#branch_var|'''var''']] ''VNAME VAL'' ] |
− | Defines the variations invoked for a branch in the automated burnup sequence. | + | [ [[#branch_incl|'''incl''']] ''MODFILE'' ] |
+ | Defines the variations invoked for a branch in the automated burnup sequence. The first parameter: | ||
{| | {| | ||
| <tt>''NAME''</tt> | | <tt>''NAME''</tt> | ||
| : branch name | | : branch name | ||
− | | | + | |} |
+ | |||
+ | The remaining parameters are defined by separate key words followed by the input values. | ||
+ | |||
+ | <u>Notes:</u> | ||
+ | |||
+ | *The branch card can be combined with the [[#coef (coefficient matrix definition)|coef card]], [[#hisv (history variation matrix definition)|hisv card]], and [[#casematrix (casematrix definition)| casematrix card]]. | ||
+ | *The branch name identifies the branch <tt>''BR<sub>m,i</sub>''</tt> in the variation matrix defined by the [[#coef (coefficient matrix definition)|coef card]], [[#hisv (history variation matrix definition)|hisv card]], and [[#casematrix (casematrix definition)| casematrix card]]. | ||
+ | *The input parameters consist of a number variations, which are invoked when the branch is applied. | ||
+ | *A single branch card may include one or several variations. | ||
+ | *For more information, see detailed description on the [[automated burnup sequence]]. | ||
+ | |||
+ | |||
+ | <u>Variation types:</u> | ||
+ | |||
+ | Branch material variation (<tt>'''repm'''</tt>):<span id="branch_repm"></span> | ||
+ | |||
+ | {| | ||
| <tt>''MAT<sub>1</sub>''</tt> | | <tt>''MAT<sub>1</sub>''</tt> | ||
| : name of the replaced material | | : name of the replaced material | ||
Line 39: | Line 57: | ||
| <tt>''MAT<sub>2</sub>''</tt> | | <tt>''MAT<sub>2</sub>''</tt> | ||
| : name of the replacing material | | : name of the replacing material | ||
− | |- | + | |} |
+ | |||
+ | <u>Notes:</u> | ||
+ | *The material variation can be used to replace one material with another, for example, to change coolant boron concentration. | ||
+ | *The material replacement works as if <tt>''MAT<sub>1</sub>''</tt> were created using the [[#mat_.28material_definition.29|mat]] or [[#mix_.28mixture_definition.29|mix]] card of <tt>''MAT<sub>2</sub>''</tt>. | ||
+ | *The name of the material present in the geometry will still be <tt>''MAT<sub>1</sub>''</tt> after the replacement, but the material specification (composition, density, tmp, moder, rgb, etc.) will correspond to <tt>''MAT<sub>2</sub>''</tt>. | ||
+ | **This means that all other input-cards that are linked to a specific material name such as '''dm''' entry in the [[#det_dm|det card]], '''sm''' entry in the [[#src_sm|src card]], [[#set_trc|set trc]] option and/or [[#set_iter_nuc|set iter nuc]] option can be linked to the original material (<tt>''MAT<sub>1</sub>''</tt>) and they will automatically apply to whatever material <tt>''MAT<sub>2</sub>''</tt> replaces <tt>''MAT<sub>1</sub>''</tt> for the branch calculation. | ||
+ | *The replaced material ''MAT<sub>1</sub>'' is also replaced inside mixtures. | ||
+ | **This means one can not replace a material with a mixture defined with [[#mix (mixture_definition)|mix card]] containing the replaced material (for example replacing pure water defined with [[#mat (material definition)|mat card]] by a mixture of boron and water defined with a [[#mix (mixture definition)|mix card]] containing the same pure water material). | ||
+ | *The replacing material ''MAT<sub>2</sub>'' can not be included in the geometry using other cards than the branch card, from version 2.1.30 and on. | ||
+ | |||
+ | |||
+ | Branch universe variation (<tt>'''repu'''</tt>):<span id="branch_repu"></span> | ||
+ | |||
+ | {| | ||
| <tt>''UNI<sub>1</sub>''</tt> | | <tt>''UNI<sub>1</sub>''</tt> | ||
| : name of the replaced universe | | : name of the replaced universe | ||
Line 45: | Line 77: | ||
| <tt>''UNI<sub>2</sub>''</tt> | | <tt>''UNI<sub>2</sub>''</tt> | ||
| : name of the replacing universe | | : name of the replacing universe | ||
− | |- | + | |} |
+ | |||
+ | <u>Notes:</u> | ||
+ | *The universe variation can be used to replace one universe with another, for example, to replace empty control rod guide tubes with rodded tubes for control rod insertion in 2D geometries. | ||
+ | *The name of the universe present in the geometry will still be <tt>''UNI<sub>1</sub>''</tt> after the replacement, but the universe contents will correspond to <tt>''UNI<sub>2</sub>''</tt>. | ||
+ | *This means that all other input-cards that are linked to a specific universe name such as '''du''' entry in the [[#det_du|det card]] and/or '''su''' entry in the [[#src_su|src card]] can be linked to the original universe (<tt>''UNI<sub>1</sub>''</tt>) and they will automatically apply to whatever universe <tt>''UNI<sub>2</sub>''</tt> replaces <tt>''UNI<sub>1</sub>''</tt> for the branch calculation. | ||
+ | |||
+ | |||
+ | Branch state variation, density/temperature (<tt>'''stp'''</tt>):<span id="branch_stp"></span> | ||
+ | {| | ||
| <tt>''MAT''</tt> | | <tt>''MAT''</tt> | ||
| : name of the material for which density and temperature are adjusted | | : name of the material for which density and temperature are adjusted | ||
|- | |- | ||
| <tt>''DENS''</tt> | | <tt>''DENS''</tt> | ||
− | | : material density after adjustment (positive | + | | : material density after adjustment (positive value = atomic density [in b<sup>-1</sup>cm<sup>-1</sup>], negative value = mass density [in g/cm<sup>3</sup>]) |
|- | |- | ||
| <tt>''TEMP''</tt> | | <tt>''TEMP''</tt> | ||
− | | : material temperature after adjustment | + | | : material temperature after adjustment [in K] |
|- | |- | ||
| <tt>''THERM<sub>n</sub>''</tt> | | <tt>''THERM<sub>n</sub>''</tt> | ||
− | | : ''n''th thermal scattering data associated with the material | + | | : ''n''-th thermal scattering data associated with the material |
|- | |- | ||
| <tt>''SABL<sub>n</sub>''</tt> | | <tt>''SABL<sub>n</sub>''</tt> | ||
− | | : name of the ''n''th S(α, β) library for temperature below the given value | + | | : name of the ''n''-th S(α, β) library for temperature below the given value |
|- | |- | ||
| <tt>''SABH<sub>n</sub>''</tt> | | <tt>''SABH<sub>n</sub>''</tt> | ||
− | | : name of the ''n''th S(α, β) library for temperature above the given value | + | | : name of the ''n''-th S(α, β) library for temperature above the given value |
− | |- | + | |} |
+ | |||
+ | <u>Notes:</u> | ||
+ | *The state variation can be used to change material density and temperature. | ||
+ | *There is a special entry for the <tt>''TEMP''</tt> parameter: | ||
+ | **"<tt>-1</tt>": to not adjust temperature | ||
+ | *There are two special entries for the <tt>''DENS''</tt> parameter: | ||
+ | ** "<tt>sum</tt>": to define the material density as the sum of the constituent nuclides densities (not supported from version 2.2.0 and on) | ||
+ | ** "<tt>original</tt>": to keep unmodified the material density (introduced in version 2.2.1). | ||
+ | *The adjustment is made using the built-in [[Doppler-broadening preprocessor routine]] and tabular interpolation for S(α, β) thermal scattering data. | ||
+ | *The last three parameters of the card are provided only if the material has thermal scattering libraries attached to it (see the [[#therm (thermal scattering library definition)|therm card]]). | ||
+ | |||
+ | |||
+ | Branch transformation variation (<tt>'''tra'''</tt>):<span id="branch_tra"></span> | ||
+ | |||
+ | {| | ||
| <tt>''TGT''</tt> | | <tt>''TGT''</tt> | ||
| : target universe, surface or cell | | : target universe, surface or cell | ||
Line 69: | Line 125: | ||
| <tt>''TRANS''</tt> | | <tt>''TRANS''</tt> | ||
| : name of the applied transformation | | : name of the applied transformation | ||
− | | | + | |} |
+ | |||
+ | <u>Notes:</u> | ||
+ | *The transformation variation can be used to move or rotate different parts of the geometry, for example, to adjust the position of control rods in 3D geometries. | ||
+ | *The name of the transformation <tt>''TRANS''</tt> refers to the unit (universe, cell or surface) entry in the [[#trans (transformations)|trans card]]. | ||
+ | |||
+ | |||
+ | Branch xenon variation (<tt>'''xenon'''</tt>):<span id="branch_xenon"></span> | ||
+ | |||
+ | {| | ||
| <tt>''OPT''</tt> | | <tt>''OPT''</tt> | ||
− | | : option for setting poison concentrations (0 = set to zero, 1 = use values from restart file) | + | | : option for setting xenon poison concentrations (0 = set to zero, 1 = use values from restart file) |
− | |- | + | |} |
+ | |||
+ | <u>Notes:</u> | ||
+ | *The xenon variation can be set to enforced the Xe-135 and Xe-135m concentrations and optionally I-135 concentration to zero. | ||
+ | **By default the concentrations are read from the restart file. | ||
+ | *Equilibrium xenon ([[#set_xenon|set xenon]] option). | ||
+ | **If the calculation is "<tt>on</tt>", then the option "<tt>0</tt>" sets I-135, Xe-135 and Xe-135m concentrations to zero. | ||
+ | **If the calculation is "<tt>off</tt>", then the option "<tt>0</tt>" sets only Xe-135 and Xe-135m concentrations to zero. | ||
+ | |||
+ | |||
+ | Branch samarium variation (<tt>'''samarium'''</tt>):<span id="branch_samarium"></span> | ||
+ | |||
+ | {| | ||
+ | | <tt>''OPT''</tt> | ||
+ | | : option for setting samarium poison concentrations (0 = set to zero, 1 = use values from restart file) | ||
+ | |} | ||
+ | |||
+ | <u>Notes:</u> | ||
+ | *The samarium variation can be set to enforce the Sm-149 concentration and possibly Pm-149 concentration to zero. | ||
+ | **By default the concentrations are read from the restart file. | ||
+ | *Equilibrium samarium ([[#set_samarium|set samarium]] option): | ||
+ | **If the calculation is "<tt>on</tt>", then the option "<tt>0</tt>" sets both Pm-149 and Sm-149 concentrations to zero. | ||
+ | **If the calculation is "<tt>off</tt>", then the option "<tt>0</tt>" sets only Sm-149 concentration to zero. | ||
+ | |||
+ | |||
+ | Branch normalization variation (<tt>'''nsf'''</tt>):<span id="branch_nsf"></span> | ||
+ | |||
+ | {| | ||
| <tt>''NSF''</tt> | | <tt>''NSF''</tt> | ||
| : normalization scaling factor | | : normalization scaling factor | ||
− | |- | + | |} |
+ | |||
+ | <u>Notes:</u> | ||
+ | *The normalization variation can be used to change the normalization. | ||
+ | *The adjustment is made applying the parameter ''NSF'' as a multiplicative scaling factor to the given normalization. | ||
+ | |||
+ | |||
+ | Branch group constant variation (<tt>'''gcu'''</tt>):<span id="branch_gcu"></span> | ||
+ | |||
+ | {| | ||
+ | | <tt>''UNI<sub>2</sub>''</tt> | ||
+ | |: name of the replacing universe | ||
+ | |} | ||
+ | |||
+ | <u>Notes:</u> | ||
+ | *The group constant variation can be used to replace the universe for group constant generation. | ||
+ | *The variation is limited to a single-valued GCU-list (see [[#set gcu|set gcu]] option). | ||
+ | |||
+ | |||
+ | Branch transport-correction variation (<tt>'''reptrc'''</tt>):<span id="branch_reptrc"></span> | ||
+ | |||
+ | {| | ||
| <tt>''FILE<sub>1</sub>''</tt> | | <tt>''FILE<sub>1</sub>''</tt> | ||
| : file path of the replaced transport correction curve data | | : file path of the replaced transport correction curve data | ||
Line 81: | Line 194: | ||
| <tt>''FILE<sub>2</sub>''</tt> | | <tt>''FILE<sub>2</sub>''</tt> | ||
| : file path of the replacing transport correction curve data | | : file path of the replacing transport correction curve data | ||
− | |- | + | |} |
+ | |||
+ | <u>Notes:</u> | ||
+ | *The transport-correction variation can be used to replace a transport correction file with another (see [[#set trc|set trc]] option). | ||
+ | |||
+ | |||
+ | Branch variable variation (<tt>'''var'''</tt>):<span id="branch_var"></span> | ||
+ | |||
+ | {| | ||
| <tt>''VNAME''</tt> | | <tt>''VNAME''</tt> | ||
| : variable name | | : variable name | ||
Line 90: | Line 211: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
+ | *The variable variation can be used to pass information into the output file, which may be convenient for the post-processing of the data. | ||
− | + | ||
− | + | Branch user-defined variation (<tt>'''incl'''</tt>):<span id="branch_incl"></span> | |
− | + | ||
− | + | {| | |
− | + | | <tt>''MODFILE''</tt> | |
− | + | |: file path to an additional/modified input file | |
− | + | |} | |
− | + | ||
− | + | <u>Notes:</u> | |
− | *The | + | *The user-defined variation can be used as a multi-purpose option to modify the base-input via the additional input file <tt>''MODFILE''</tt>. |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
=== casematrix (casematrix definition)<span id="casematrix"></span> === | === casematrix (casematrix definition)<span id="casematrix"></span> === | ||
Line 133: | Line 243: | ||
|- | |- | ||
| <tt>''HIS_BR<sub>k</sub>''</tt> | | <tt>''HIS_BR<sub>k</sub>''</tt> | ||
− | | : name of the ''k''th history variation branch | + | | : name of the ''k''-th history variation branch |
|- | |- | ||
| <tt>''NBU''</tt> | | <tt>''NBU''</tt> | ||
Line 139: | Line 249: | ||
|- | |- | ||
| <tt>''BU<sub>n</sub>''</tt> | | <tt>''BU<sub>n</sub>''</tt> | ||
− | | : burnup steps at which the momentary variation branches are invoked | + | | : burnup steps at which the momentary variation branches are invoked (positive value = burnup [in MWd/kg], negative value = time [in d]) |
|- | |- | ||
| <tt>''NBR<sub>m</sub>''</tt> | | <tt>''NBR<sub>m</sub>''</tt> | ||
− | | : number branches in the ''m''th dimension of the burnup matrix | + | | : number branches in the ''m''-th dimension of the burnup matrix |
|- | |- | ||
| <tt>''BR<sub>m,i</sub>''</tt> | | <tt>''BR<sub>m,i</sub>''</tt> | ||
− | | : name of the ''i''th branch in the ''m''th dimension | + | | : name of the ''i''-th branch in the ''m''-th dimension |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
*The casematrix card performs multiple depletions with <tt>''NHIS''</tt> (different) historical variations and performs restarts similar as the [[#coef|coef]] input card. | *The casematrix card performs multiple depletions with <tt>''NHIS''</tt> (different) historical variations and performs restarts similar as the [[#coef|coef]] input card. | ||
− | *The casematrix card creates a multi-dimensional coefficient matrix (of size <tt>''NBR<sub>1</sub>''</tt> × <tt>''NBR<sub>2</sub>''</tt> × <tt>''NBR<sub>3</sub>''</tt> × ... ). The automated burnup sequence performs a restart for each of the listed burnup points, and loops over the branch combinations defined by the coefficient matrix. This is repeated for each different depletion history | + | *The casematrix card creates a multi-dimensional coefficient matrix (of size <tt>''NBR<sub>1</sub>''</tt> × <tt>''NBR<sub>2</sub>''</tt> × <tt>''NBR<sub>3</sub>''</tt> × ... ). |
− | + | **The automated burnup sequence performs a restart for each of the listed burnup points, and loops over the branch combinations defined by the coefficient matrix. | |
− | *The casematrix card is used together with the [[#branch (branch definition)|branch card]] and [[Installing_and_running_Serpent#Running_casematrix_calculations|-casematrix]] | + | **This is repeated for each different depletion history. |
+ | *The casematrix card is used together with the [[#branch (branch definition)|branch card]] and [[Installing_and_running_Serpent#Running_casematrix_calculations|<tt>''-casematrix''</tt>]] command line option. | ||
*Multiple casematrix cards can be given in a single input file. | *Multiple casematrix cards can be given in a single input file. | ||
*For more information, see detailed description on [[automated burnup sequence]]. | *For more information, see detailed description on [[automated burnup sequence]]. | ||
Line 161: | Line 272: | ||
'''cell''' ''NAME UNI<sub>0</sub> MAT'' [ ''SURF<sub>1</sub>'' ''SURF<sub>2</sub>'' ... ] | '''cell''' ''NAME UNI<sub>0</sub> MAT'' [ ''SURF<sub>1</sub>'' ''SURF<sub>2</sub>'' ... ] | ||
− | Defines a | + | Defines a cell. Input values: |
{| | {| | ||
Line 177: | Line 288: | ||
|} | |} | ||
− | + | <u>Notes:</u> | |
− | + | *The cell definition is based on the universe-based geometry type in Serpent. | |
− | + | *Universes are implicitly declared, e.g., by using the <tt>''UNI<sub>0</sub>''</tt> key word on cell cards, as there is no explicit universe input card. | |
− | + | *The surface list defines the boundaries of the cell by listing the surface names (as provided in the surface definition, [[#surf (surface definition)|surf card]]), together with the operator identifiers (nothing for intersection, ":" for union, "-" for complement and "#" for cell complement). | |
− | + | *The general cell definition (so-called "material cell") have tailored types, defined by special material entries (replacing <tt>''MAT''</tt>): | |
− | + | ::{| class="wikitable" style="text-align: left;" | |
− | | : | + | ! Type |
+ | ! Description | ||
|- | |- | ||
− | | <tt> | + | | <tt>void</tt> |
− | | | + | | region is defined as zero-collision |
|- | |- | ||
− | | <tt>''UNI<sub>1</sub>''</tt> | + | | <tt>fill ''UNI<sub>1</sub>''</tt> |
− | | | + | | region is filled by another universe, <tt>''UNI<sub>1</sub>''</tt> |
|- | |- | ||
− | | <tt> | + | | <tt>outside</tt> |
− | | | + | | region is not part of the actual geometry ("outside world") |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
|- | |- | ||
− | |||
− | |||
− | |||
− | |||
− | |||
|} | |} | ||
− | + | ::Outside cells: | |
− | + | ::*When the particle enters an outside cell, the boundary conditions are applied (see [[#set bc|set bc]] option). It is important that the geometry model is non-re-entrant (convex) when vacuum boundary conditions are used. Delta-tracking might miss the boundary conditions in a re-entrant (concave) outer surface. | |
− | + | ::*Outside cells are allowed only in the root universe. It is important that all space outside the model is defined. | |
− | + | ||
*Cells defined without surfaces are treated as infinite, from version 2.1.32 on. | *Cells defined without surfaces are treated as infinite, from version 2.1.32 on. | ||
− | |||
*When the geometry is set up, the root universe must always be defined. By default the root universe is named "0", and it can be changed with the [[#set root|set root]] option. | *When the geometry is set up, the root universe must always be defined. By default the root universe is named "0", and it can be changed with the [[#set root|set root]] option. | ||
− | |||
− | |||
− | |||
− | |||
*For more information, see detailed description on the [[universe-based geometry type in Serpent]]. | *For more information, see detailed description on the [[universe-based geometry type in Serpent]]. | ||
Line 235: | Line 327: | ||
|- | |- | ||
| <tt>''BU<sub>n</sub>''</tt> | | <tt>''BU<sub>n</sub>''</tt> | ||
− | | : burnup steps at which the branches are invoked | + | | : burnup steps at which the branches are invoked (positive value = burnup [in MWd/kg], negative value = time [in d]) |
|- | |- | ||
| <tt>''NBR<sub>m</sub>''</tt> | | <tt>''NBR<sub>m</sub>''</tt> | ||
− | | : number branches in the ''m''th dimension of the burnup matrix | + | | : number branches in the ''m''-th dimension of the burnup matrix |
|- | |- | ||
| <tt>''BR<sub>m,i</sub>''</tt> | | <tt>''BR<sub>m,i</sub>''</tt> | ||
− | | : name of the ''i''th branch in the ''m''th dimension | + | | : name of the ''i''-th branch in the ''m''-th dimension |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | *The coef card creates a multi-dimensional coefficient matrix (of size <tt>''NBR<sub>1</sub>''</tt> × <tt>''NBR<sub>2</sub>''</tt> × <tt>''NBR<sub>3</sub>''</tt> × ... ). The automated burnup sequence performs a restart for each of the listed burnup points, and loops over the branch combinations defined by the coefficient matrix | + | *The coef card creates a multi-dimensional coefficient matrix (of size <tt>''NBR<sub>1</sub>''</tt> × <tt>''NBR<sub>2</sub>''</tt> × <tt>''NBR<sub>3</sub>''</tt> × ... ). |
− | + | **The automated burnup sequence performs a restart for each of the listed burnup points, and loops over the branch combinations defined by the coefficient matrix. | |
*The coef card is used together with the [[#branch (branch definition)|branch]] card. | *The coef card is used together with the [[#branch (branch definition)|branch]] card. | ||
*For multiple historical variations or historical conditions defined using a [[#branch (branch definition)|branch]] card, see the [[#casematrix (casematrix definition)|casematrix]] card. | *For multiple historical variations or historical conditions defined using a [[#branch (branch definition)|branch]] card, see the [[#casematrix (casematrix definition)|casematrix]] card. | ||
Line 254: | Line 346: | ||
=== datamesh (general data mesh definition)<span id="datamesh"></span> === | === datamesh (general data mesh definition)<span id="datamesh"></span> === | ||
− | + | '''datamesh''' ''NAME'' ''TYPE'' ''USE<sub>LC</sub>'' [ ... ] | |
− | + | Defines a general data mesh to be used for spacial discretisation. Input values: | |
− | + | ||
− | Defines a | + | |
{| | {| | ||
| <tt>''NAME''</tt> | | <tt>''NAME''</tt> | ||
| : mesh name | | : mesh name | ||
+ | |- | ||
+ | | <tt>''TYPE''</tt> | ||
+ | | : mesh type | ||
|- | |- | ||
| <tt>''USE<sub>LC</sub>''</tt> | | <tt>''USE<sub>LC</sub>''</tt> | ||
| : use lowest level coordinates (1/yes) instead of global coordinates (0/no) for the mesh search | | : use lowest level coordinates (1/yes) instead of global coordinates (0/no) for the mesh search | ||
|- | |- | ||
+ | |} | ||
+ | |||
+ | The remaining parameters are type-dependent. | ||
+ | |||
+ | <u>Notes:</u> | ||
+ | *The general data mesh can be used, e.g., with detectors ('''dmesh''' entry in the [[#det|det card]]), interfaces ([[#ifc|ifc card]]), sensitivities ('''opt dmesh''' entry in the [[#sens|sens card]]), etc. | ||
+ | *When Serpent makes the mesh search for a specific collision point, it will save the collision mesh cell temporarily so that the cell search is conducted at most once even when scoring multiple estimators using the same mesh. | ||
+ | *The nested data meshes (type 9) take the coordinates' level from the <tt>''USE<sub>LC</sub>''</tt> parameter defined in the nested mesh itself and use it in the subsequent sub-meshes, overriding the <tt>''USE<sub>LC</sub>''</tt> parameter defined on those. | ||
+ | |||
+ | The available <u>general data mesh types</u> are: | ||
+ | ::{| class="wikitable" style="text-align: left;" | ||
+ | ! Type | ||
+ | ! Description | ||
+ | |- | ||
+ | | [[#datamesh_1|<tt>1</tt>]] | ||
+ | | regular 3D Cartesian mesh | ||
+ | |- | ||
+ | | [[#datamesh_2|<tt>2</tt>]] | ||
+ | | regular 2D cylindrical mesh | ||
+ | |- | ||
+ | | [[#datamesh_4|<tt>4</tt>]] | ||
+ | | regular 3D X-type hexagonal mesh | ||
+ | |- | ||
+ | | [[#datamesh_5|<tt>5</tt>]] | ||
+ | | regular 3D Y-type hexagonal mesh | ||
+ | |- | ||
+ | | [[#datamesh_6|<tt>6</tt>]] | ||
+ | | irregular 3D Cartesian mesh | ||
+ | |- | ||
+ | | [[#datamesh_8|<tt>8</tt>]] | ||
+ | | radially irregular 2D cylindrical mesh | ||
+ | |- | ||
+ | | [[#datamesh_9|<tt>9</tt>]] | ||
+ | | regular nested mesh | ||
+ | |- | ||
+ | |} | ||
+ | |||
+ | The syntax of the available types is as follows: | ||
+ | |||
+ | '''datamesh''' ''NAME'' '''1''' ''USE<sub>LC</sub>'' ''N<sub>X</sub>'' ''X<sub>MIN</sub>'' ''X<sub>MAX</sub>'' ''N<sub>Y</sub>'' ''Y<sub>MIN</sub>'' ''Y<sub>MAX</sub>'' ''N<sub>Z</sub>'' ''Z<sub>MIN</sub>'' ''Z<sub>MAX</sub>'' <span id="datamesh_1"></span> | ||
+ | |||
+ | {| | ||
| <tt>''N<sub>X</sub>''</tt> | | <tt>''N<sub>X</sub>''</tt> | ||
− | | : number of cells in the x direction | + | | : number of cells in the x-direction |
|- | |- | ||
| <tt>''X<sub>MIN</sub>''</tt> | | <tt>''X<sub>MIN</sub>''</tt> | ||
− | | : mesh lower x boundary | + | | : mesh lower x-boundary [in cm] |
|- | |- | ||
| <tt>''X<sub>MAX</sub>''</tt> | | <tt>''X<sub>MAX</sub>''</tt> | ||
− | | : mesh higher x boundary | + | | : mesh higher x-boundary [in cm] |
|- | |- | ||
| <tt>''N<sub>Y</sub>''</tt> | | <tt>''N<sub>Y</sub>''</tt> | ||
− | | : number of cells in the y direction | + | | : number of cells in the y-direction |
|- | |- | ||
| <tt>''Y<sub>MIN</sub>''</tt> | | <tt>''Y<sub>MIN</sub>''</tt> | ||
− | | : mesh lower y boundary | + | | : mesh lower y-boundary [in cm] |
|- | |- | ||
| <tt>''Y<sub>MAX</sub>''</tt> | | <tt>''Y<sub>MAX</sub>''</tt> | ||
− | | : mesh higher y boundary | + | | : mesh higher y-boundary [in cm] |
|- | |- | ||
| <tt>''N<sub>Z</sub>''</tt> | | <tt>''N<sub>Z</sub>''</tt> | ||
− | | : number of cells in the z direction | + | | : number of cells in the z-direction |
|- | |- | ||
| <tt>''Z<sub>MIN</sub>''</tt> | | <tt>''Z<sub>MIN</sub>''</tt> | ||
− | | : mesh lower z boundary | + | | : mesh lower z-boundary [in cm] |
|- | |- | ||
| <tt>''Z<sub>MAX</sub>''</tt> | | <tt>''Z<sub>MAX</sub>''</tt> | ||
− | | : mesh higher z boundary | + | | : mesh higher z-boundary [in cm] |
|} | |} | ||
− | '''datamesh''' ''NAME'' '''2''' ''USE<sub>LC</sub>'' ''N<sub>R</sub>'' ''R<sub>MIN</sub>'' ''R<sub>MAX</sub>'' ''N<sub>PHI</sub>'' | + | '''datamesh''' ''NAME'' '''2''' ''USE<sub>LC</sub>'' ''N<sub>R</sub>'' ''R<sub>MIN</sub>'' ''R<sub>MAX</sub>'' ''N<sub>PHI</sub>'' <span id="datamesh_2"></span> |
− | + | ||
− | + | ||
{| | {| | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| <tt>''N<sub>R</sub>''</tt> | | <tt>''N<sub>R</sub>''</tt> | ||
| : number of cells in the radial direction | | : number of cells in the radial direction | ||
|- | |- | ||
| <tt>''R<sub>MIN</sub>''</tt> | | <tt>''R<sub>MIN</sub>''</tt> | ||
− | | : mesh inner radial boundary | + | | : mesh inner radial boundary [in cm] |
|- | |- | ||
| <tt>''R<sub>MAX</sub>''</tt> | | <tt>''R<sub>MAX</sub>''</tt> | ||
− | | : mesh outer radial boundary | + | | : mesh outer radial boundary [in cm] |
|- | |- | ||
| <tt>''N<sub>PHI</sub>''</tt> | | <tt>''N<sub>PHI</sub>''</tt> | ||
Line 320: | Line 447: | ||
[[File:Hex lattice x index.png|frame|X-type hexagonal mesh horizontal indexing example for N<sub>X</sub> = N<sub>Y</sub> = 3.]] | [[File:Hex lattice x index.png|frame|X-type hexagonal mesh horizontal indexing example for N<sub>X</sub> = N<sub>Y</sub> = 3.]] | ||
− | |||
− | + | '''datamesh''' ''NAME'' '''4''' ''USE<sub>LC</sub>'' ''X<sub>0</sub>'' ''Y<sub>0</sub>'' ''PITCH'' ''Z<sub>MIN</sub>'' ''Z<sub>MAX</sub>'' ''N<sub>X</sub>'' ''N<sub>Y</sub>'' ''N<sub>Z</sub>'' <span id="datamesh_4"></span> | |
{| | {| | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| <tt>''X<sub>0</sub>''</tt> | | <tt>''X<sub>0</sub>''</tt> | ||
− | | : mesh horizontal origin x-coordinate | + | | : mesh horizontal origin x-coordinate [in cm] |
|- | |- | ||
| <tt>''Y<sub>0</sub>''</tt> | | <tt>''Y<sub>0</sub>''</tt> | ||
− | | : mesh horizontal origin y-coordinate | + | | : mesh horizontal origin y-coordinate [in cm] |
|- | |- | ||
| <tt>''PITCH''</tt> | | <tt>''PITCH''</tt> | ||
− | | : mesh horizontal pitch (equal to cell flat-to-flat width) | + | | : mesh horizontal pitch (equal to cell flat-to-flat width) [in cm] |
|- | |- | ||
| <tt>''Z<sub>MIN</sub>''</tt> | | <tt>''Z<sub>MIN</sub>''</tt> | ||
− | | : mesh lower z boundary | + | | : mesh lower z-boundary [in cm] |
|- | |- | ||
| <tt>''Z<sub>MAX</sub>''</tt> | | <tt>''Z<sub>MAX</sub>''</tt> | ||
− | | : mesh higher z boundary | + | | : mesh higher z-boundary [in cm] |
|- | |- | ||
| <tt>''N<sub>X</sub>''</tt> | | <tt>''N<sub>X</sub>''</tt> | ||
− | | : number of cells in the x direction | + | | : number of cells in the x-direction |
|- | |- | ||
| <tt>''N<sub>Y</sub>''</tt> | | <tt>''N<sub>Y</sub>''</tt> | ||
− | | : number of cells in the y direction | + | | : number of cells in the y-direction |
|- | |- | ||
| <tt>''N<sub>Z</sub>''</tt> | | <tt>''N<sub>Z</sub>''</tt> | ||
− | | : number of cells in the z direction | + | | : number of cells in the z-direction |
|} | |} | ||
[[File:Hex lattice y index.png|frame|Y-type hexagonal mesh horizontal indexing example for N<sub>X</sub> = N<sub>Y</sub> = 3.]] | [[File:Hex lattice y index.png|frame|Y-type hexagonal mesh horizontal indexing example for N<sub>X</sub> = N<sub>Y</sub> = 3.]] | ||
− | |||
− | + | '''datamesh''' ''NAME'' '''5''' ''USE<sub>LC</sub>'' ''X<sub>0</sub>'' ''Y<sub>0</sub>'' ''PITCH'' ''Z<sub>MIN</sub>'' ''Z<sub>MAX</sub>'' ''N<sub>X</sub>'' ''N<sub>Y</sub>'' ''N<sub>Z</sub>'' <span id="datamesh_5"></span> | |
{| | {| | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| <tt>''X<sub>0</sub>''</tt> | | <tt>''X<sub>0</sub>''</tt> | ||
− | | : mesh horizontal origin x-coordinate | + | | : mesh horizontal origin x-coordinate [in cm] |
|- | |- | ||
| <tt>''Y<sub>0</sub>''</tt> | | <tt>''Y<sub>0</sub>''</tt> | ||
− | | : mesh horizontal origin y-coordinate | + | | : mesh horizontal origin y-coordinate [in cm] |
|- | |- | ||
| <tt>''PITCH''</tt> | | <tt>''PITCH''</tt> | ||
− | | : mesh horizontal pitch (equal to cell flat-to-flat width) | + | | : mesh horizontal pitch (equal to cell flat-to-flat width) [in cm] |
|- | |- | ||
| <tt>''Z<sub>MIN</sub>''</tt> | | <tt>''Z<sub>MIN</sub>''</tt> | ||
− | | : mesh lower z boundary | + | | : mesh lower z-boundary [in cm] |
|- | |- | ||
| <tt>''Z<sub>MAX</sub>''</tt> | | <tt>''Z<sub>MAX</sub>''</tt> | ||
− | | : mesh higher z boundary | + | | : mesh higher z-boundary [in cm] |
|- | |- | ||
| <tt>''N<sub>X</sub>''</tt> | | <tt>''N<sub>X</sub>''</tt> | ||
− | | : number of cells in the x direction | + | | : number of cells in the x-direction |
|- | |- | ||
| <tt>''N<sub>Y</sub>''</tt> | | <tt>''N<sub>Y</sub>''</tt> | ||
− | | : number of cells in the y direction | + | | : number of cells in the y-direction |
|- | |- | ||
| <tt>''N<sub>Z</sub>''</tt> | | <tt>''N<sub>Z</sub>''</tt> | ||
− | | : number of cells in the z direction | + | | : number of cells in the z-direction |
|} | |} | ||
− | '''datamesh''' ''NAME'' '''6''' ''USE<sub>LC</sub>'' ''N<sub>X</sub>'' ''N<sub>Y</sub>'' ''N<sub>Z</sub>'' ''X<sub>1</sub>'' ... ''X<sub>N<sub>X</sub>+1</sub>'' ''Y<sub>1</sub>'' ... ''Y<sub>N<sub>Y</sub>+1</sub>'' ''Z<sub>1</sub>'' ... ''Z<sub>N<sub>Z</sub>+1</sub>'' | + | '''datamesh''' ''NAME'' '''6''' ''USE<sub>LC</sub>'' ''N<sub>X</sub>'' ''N<sub>Y</sub>'' ''N<sub>Z</sub>'' ''X<sub>1</sub>'' ... ''X<sub>N<sub>X</sub>+1</sub>'' ''Y<sub>1</sub>'' ... ''Y<sub>N<sub>Y</sub>+1</sub>'' ''Z<sub>1</sub>'' ... ''Z<sub>N<sub>Z</sub>+1</sub>'' <span id="datamesh_6"></span> |
− | + | ||
− | + | ||
{| | {| | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| <tt>''N<sub>X</sub>''</tt> | | <tt>''N<sub>X</sub>''</tt> | ||
− | | : number of cells in the x direction | + | | : number of cells in the x-direction |
|- | |- | ||
| <tt>''N<sub>Y</sub>''</tt> | | <tt>''N<sub>Y</sub>''</tt> | ||
− | | : number of cells in the y direction | + | | : number of cells in the y-direction |
|- | |- | ||
| <tt>''N<sub>Z</sub>''</tt> | | <tt>''N<sub>Z</sub>''</tt> | ||
− | | : number of cells in the z direction | + | | : number of cells in the z-direction |
|- | |- | ||
| <tt>''X<sub>i</sub>''</tt> | | <tt>''X<sub>i</sub>''</tt> | ||
− | | : <tt>''N<sub>X</sub>'' + 1</tt> mesh boundaries in the x direction | + | | : <tt>''N<sub>X</sub>'' + 1</tt> mesh boundaries in the x-direction [in cm] |
|- | |- | ||
| <tt>''Y<sub>i</sub>''</tt> | | <tt>''Y<sub>i</sub>''</tt> | ||
− | | : <tt>''N<sub>Y</sub>'' + 1</tt> mesh boundaries in the y direction | + | | : <tt>''N<sub>Y</sub>'' + 1</tt> mesh boundaries in the y-direction [in cm] |
|- | |- | ||
| <tt>''Z<sub>i</sub>''</tt> | | <tt>''Z<sub>i</sub>''</tt> | ||
− | | : <tt>''N<sub>Z</sub>'' + 1</tt> mesh boundaries in the z direction | + | | : <tt>''N<sub>Z</sub>'' + 1</tt> mesh boundaries in the z-direction [in cm] |
|} | |} | ||
− | '''datamesh''' ''NAME'' '''8''' ''USE<sub>LC</sub>'' ''N<sub>R</sub>'' ''N<sub>PHI</sub>'' ''R<sub>1</sub>'' ... ''R<sub>N<sub>R</sub>+1</sub>'' | + | '''datamesh''' ''NAME'' '''8''' ''USE<sub>LC</sub>'' ''N<sub>R</sub>'' ''N<sub>PHI</sub>'' ''R<sub>1</sub>'' ... ''R<sub>N<sub>R</sub>+1</sub>'' <span id="datamesh_8"></span> |
− | + | ||
− | + | ||
{| | {| | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| <tt>''N<sub>R</sub>''</tt> | | <tt>''N<sub>R</sub>''</tt> | ||
| : number of cells in the radial direction | | : number of cells in the radial direction | ||
Line 441: | Line 538: | ||
|- | |- | ||
| <tt>''R<sub>i</sub>''</tt> | | <tt>''R<sub>i</sub>''</tt> | ||
− | | : <tt>''N<sub>R</sub>'' + 1</tt> mesh boundaries in the | + | | : <tt>''N<sub>R</sub>'' + 1</tt> mesh boundaries in the radial direction [in cm] |
|} | |} | ||
− | '''datamesh''' ''NAME'' '''9''' ''N<sub>LEVEL</sub>'' ''MESH<sub>1</sub>'' ... ''MESH<sub>N<sub>LEVEL</sub></sub>'' | + | '''datamesh''' ''NAME'' '''9''' ''USE<sub>LC</sub>'' ''N<sub>LEVEL</sub>'' ''MESH<sub>1</sub>'' ... ''MESH<sub>N<sub>LEVEL</sub></sub>'' <span id="datamesh_9"></span> |
− | + | ||
− | + | ||
{| | {| | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| <tt>''N<sub>LEVEL</sub>''</tt> | | <tt>''N<sub>LEVEL</sub>''</tt> | ||
| : number of nested levels in this mesh | | : number of nested levels in this mesh | ||
Line 461: | Line 550: | ||
| : sub mesh to use at level ''i'' | | : sub mesh to use at level ''i'' | ||
|} | |} | ||
− | |||
− | |||
− | |||
=== dep (depletion history)<span id="dep"></span> === | === dep (depletion history)<span id="dep"></span> === | ||
Line 480: | Line 566: | ||
The possible step types are: | The possible step types are: | ||
− | {| class="wikitable" style="text-align: left;" | + | ::{| class="wikitable" style="text-align: left;" |
! Type | ! Type | ||
! Description | ! Description | ||
Line 528: | Line 614: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | * | + | *Depletion calculations (burnup/activation steps) require normalization. |
− | *Transport cycle is run only once with | + | **See: [[#set power|set power]], [[#set powdens|set powdens]], [[#set flux|set flux]], [[#set genrate|set genrate]], [[#set fissrate|set fissrate]], [[#set absrate|set absrate]], [[#set lossrate|set lossrate]], [[#set srcrate|set srcrate]], [[#set sfrate|set sfrate]]. |
+ | **If the normalization is set to zero, physical estimates, e.g., detectors will be printed as zero. | ||
+ | ***Alternatively, use a very small value to enforce a non-zero normalization. | ||
+ | **Except: | ||
+ | ***Radioactive decay source: source rate normalization is carried out automatically based on the total emission rate. | ||
+ | ***Decay steps: equivalent, e.g., zero power. | ||
+ | *Activation step, "<tt>actstep</tt>" and "<tt>acttot</tt>": | ||
+ | **Transport cycle is run only once and transmutation cross sections are not updated. | ||
+ | **Limitations: | ||
+ | ***It must be preceeded by a burnup step. | ||
+ | ***It cannot be used with a burnable material radioactive source. | ||
+ | ***Burnup is not calculated correctly | ||
+ | *Decay step, "<tt>decstep</tt>" and "<tt>dectot</tt>": | ||
+ | **Transport cycle is omitted and transmutation cross sections are not calculated. | ||
+ | **Limitations: | ||
+ | ***It cannot preceed activation steps. | ||
+ | ***Physical estimates, e.g., detectors will not be printed for the given step (value zero) due to normalization | ||
'''dep''' '''pro''' ''REP_NAME'' ''STYPE'' [ ''STEP<sub>1</sub> STEP<sub>2</sub> ...'' ] | '''dep''' '''pro''' ''REP_NAME'' ''STYPE'' [ ''STEP<sub>1</sub> STEP<sub>2</sub> ...'' ] | ||
Line 563: | Line 665: | ||
[ [[#det_dy|'''dy''']] ''Y<sub>MIN</sub>'' ''Y<sub>MAX</sub>'' ''N<sub>Y</sub>'' ] | [ [[#det_dy|'''dy''']] ''Y<sub>MIN</sub>'' ''Y<sub>MAX</sub>'' ''N<sub>Y</sub>'' ] | ||
[ [[#det_dz|'''dz''']] ''Z<sub>MIN</sub>'' ''Z<sub>MAX</sub>'' ''N<sub>Z</sub>'' ] | [ [[#det_dz|'''dz''']] ''Z<sub>MIN</sub>'' ''Z<sub>MAX</sub>'' ''N<sub>Z</sub>'' ] | ||
− | [ [[# | + | [ [[#det_dn1|'''dn''']] ''TYPE'' ''MIN<sub>1</sub>'' ''MAX<sub>1</sub>'' ''N<sub>1</sub>'' ''MIN<sub>2</sub>'' ''MAX<sub>2</sub>'' ''N<sub>2</sub>'' ''MIN<sub>3</sub>'' ''MAX<sub>3</sub>'' ''N<sub>3</sub>'' ] |
+ | [ [[#det_dn2|'''dn''']] ''TYPE'' ''N<sub>1</sub>'' ''N<sub>2</sub>'' ''N<sub>3</sub>'' ''LIM<sub>11</sub>''...''LIM<sub>1N+1</sub>'' ''LIM<sub>21</sub>''...''LIM<sub>2N+1</sub>'' ''LIM<sub>31</sub>''...''LIM<sub>3N+1</sub>'' ] | ||
[ [[#det_dh|'''dh''']] ''TYPE'' ''X<sub>0</sub>'' ''Y<sub>0</sub>'' ''PITCH'' ''N<sub>1</sub>'' ''N<sub>2</sub>'' ''Z<sub>MIN</sub>'' ''Z<sub>MAX</sub>'' ''N<sub>Z</sub>'' ] | [ [[#det_dh|'''dh''']] ''TYPE'' ''X<sub>0</sub>'' ''Y<sub>0</sub>'' ''PITCH'' ''N<sub>1</sub>'' ''N<sub>2</sub>'' ''Z<sub>MIN</sub>'' ''Z<sub>MAX</sub>'' ''N<sub>Z</sub>'' ] | ||
[ [[#det_dumsh|'''dumsh''']] ''UNI'' ''N<sub>C</sub>'' ''CELL<sub>0</sub>'' ''BIN<sub>0</sub>'' ''CELL<sub>1</sub>'' ''BIN<sub>1</sub>'' ... ] | [ [[#det_dumsh|'''dumsh''']] ''UNI'' ''N<sub>C</sub>'' ''CELL<sub>0</sub>'' ''BIN<sub>0</sub>'' ''CELL<sub>1</sub>'' ''BIN<sub>1</sub>'' ... ] | ||
Line 579: | Line 682: | ||
[ [[#det_dphb|'''dphb''']] ''PHB'' ] | [ [[#det_dphb|'''dphb''']] ''PHB'' ] | ||
[ [[#det_dmesh|'''dmesh''']] ''MESH'' ] | [ [[#det_dmesh|'''dmesh''']] ''MESH'' ] | ||
− | Detector definition. The first | + | Detector definition. The two first parameters: |
{| | {| | ||
+ | | <tt>''NAME''</tt> | ||
+ | | : detector name | ||
+ | |- | ||
| <tt>''PART''</tt> | | <tt>''PART''</tt> | ||
| : particle type (n = neutron, p = photon) | | : particle type (n = neutron, p = photon) | ||
|} | |} | ||
− | + | The remaining parameters are defined by separate key words followed by the input values. | |
+ | |||
+ | <u>Notes:</u> | ||
+ | *The particle type <tt>''PART''</tt> is optional in single particle simulations. | ||
+ | *The detectors estimates are integrated values over the space, angle, energy and time domains. | ||
+ | *A detector with an associated discretization in space, angle, energy and/or time turns into multiple bins. Each bin results are correspondingly integrated over the discretization domain. | ||
+ | *A single detector card may include one or several detector types. If multiple detectors are defined, the results are correspondingly divided into multiple bins. | ||
+ | |||
+ | <u>Detector types:</u> | ||
Detector response (<tt>'''dr'''</tt>):<span id="det_dr"></span> | Detector response (<tt>'''dr'''</tt>):<span id="det_dr"></span> | ||
Line 596: | Line 710: | ||
|- | |- | ||
| <tt>''MAT''</tt> | | <tt>''MAT''</tt> | ||
− | | : material name | + | | : response associated material name |
|} | |} | ||
Line 602: | Line 716: | ||
*If the detector is assigned with multiple responses, the results are divided correspondingly into separate bins. | *If the detector is assigned with multiple responses, the results are divided correspondingly into separate bins. | ||
*The response numbers are [[ENDF reaction MT's and macroscopic reaction numbers|ENDF reaction MT's and special reaction types]]. | *The response numbers are [[ENDF reaction MT's and macroscopic reaction numbers|ENDF reaction MT's and special reaction types]]. | ||
− | *Positive response numbers are associated with microscopic cross sections | + | **Positive response numbers: |
− | *Microscopic reactions to ground and isomeric states can be calculated by adding "g" or "m" at the end of the reaction number | + | *** They are associated with microscopic cross sections |
− | *Negative response numbers are associated with macroscopic cross sections and special types | + | *** The detector result is independent of the material density. |
− | *The response material in the <tt>'''dr'''</tt> entry must not be confused with the material in the <tt>'''dm'''</tt> entry. The former defines the material for the response function, while the latter determines the volume of integration. | + | *** Materials associated to microscopic cross sections must consist of a single nuclide. |
+ | ***Microscopic reactions to ground and isomeric states can be calculated by adding "<tt>g</tt>" or "<tt>m</tt>" at the end of the reaction number. | ||
+ | ****E.g. 102g and 102m refer to radiative capture to ground and isomeric states, respectively. | ||
+ | ****This option is available only for nuclides with [[#set_bralib|branching ratios]]. | ||
+ | **Negative response numbers: | ||
+ | *** They are associated with macroscopic cross sections and special types | ||
+ | *** The detector result is multiplied by material density | ||
+ | *The response material in the <tt>'''dr'''</tt> entry must not be confused with the material in the <tt>'''dm'''</tt> entry. | ||
+ | ** The former defines the material for the response function, while the latter determines the volume of integration. | ||
+ | **There is a special entry for the response associated material: | ||
+ | *** "<tt>void</tt>": to allow the response not to be pre-assigned with a specific material. | ||
+ | **** When the detector scores in a collision, the cross-section is taken from the material at the collision point. | ||
+ | **** Use, e.g., to calculate integral reaction rates over regions composed of multiple materials. | ||
+ | **** It only can be used with negative response numbers. | ||
*By default, Serpent allows a detector to have at most 10,000,000 bins. | *By default, Serpent allows a detector to have at most 10,000,000 bins. | ||
Line 613: | Line 740: | ||
{| | {| | ||
| <tt>''VOL''</tt> | | <tt>''VOL''</tt> | ||
− | | : volume in cm<sup>3</sup> (3D geometry) or cross-sectional area in cm<sup>2</sup> (2D geometry) | + | | : volume [in cm<sup>3</sup>] (3D geometry) or cross-sectional area [in cm<sup>2</sup>] (2D geometry) |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | *The results are divided by detector volume | + | *The results are divided by detector bin-volume (default value: 1.0) |
+ | *In the case of surface detectors, ''VOL'' represents the surface area [in cm<sup>2</sup>] (3D geometry) or the surface length [in cm] (2D geometry). | ||
Line 650: | Line 778: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
+ | *There is a special entry for the material name: | ||
+ | **"<tt>fiss</tt>": to score only in fissile region(s) | ||
*If multiple detector materials are defined, the results are correspondingly divided into multiple bins. | *If multiple detector materials are defined, the results are correspondingly divided into multiple bins. | ||
*The material entry defines the volume of integration, which must not be confused with the response material in the <tt>'''dr'''</tt> entry. | *The material entry defines the volume of integration, which must not be confused with the response material in the <tt>'''dr'''</tt> entry. | ||
Line 665: | Line 795: | ||
− | Cartesian mesh | + | Detector evenly-spaced Cartesian mesh (<tt>'''dx'''</tt>, <tt>'''dy'''</tt> and <tt>'''dz'''</tt>):<span id="det_dx"></span><span id="det_dy"></span><span id="det_dz"></span> |
{| | {| | ||
| <tt>''X<sub>MIN</sub>''</tt> | | <tt>''X<sub>MIN</sub>''</tt> | ||
− | | : minimum x-coordinate of the detector mesh | + | | : minimum x-coordinate of the detector mesh [in cm] |
|- | |- | ||
| <tt>''X<sub>MAX</sub>''</tt> | | <tt>''X<sub>MAX</sub>''</tt> | ||
− | | : maximum x-coordinate of the detector mesh | + | | : maximum x-coordinate of the detector mesh [in cm] |
|- | |- | ||
| <tt>''N<sub>X</sub>''</tt> | | <tt>''N<sub>X</sub>''</tt> | ||
Line 678: | Line 808: | ||
|- | |- | ||
| <tt>''Y<sub>MIN</sub>''</tt> | | <tt>''Y<sub>MIN</sub>''</tt> | ||
− | | : minimum y-coordinate of the detector mesh | + | | : minimum y-coordinate of the detector mesh [in cm] |
|- | |- | ||
| <tt>''Y<sub>MAX</sub>''</tt> | | <tt>''Y<sub>MAX</sub>''</tt> | ||
− | | : maximum y-coordinate of the detector mesh | + | | : maximum y-coordinate of the detector mesh [in cm] |
|- | |- | ||
| <tt>''N<sub>Y</sub>''</tt> | | <tt>''N<sub>Y</sub>''</tt> | ||
Line 687: | Line 817: | ||
|- | |- | ||
| <tt>''Z<sub>MIN</sub>''</tt> | | <tt>''Z<sub>MIN</sub>''</tt> | ||
− | | : minimum z-coordinate of the detector mesh | + | | : minimum z-coordinate of the detector mesh [in cm] |
|- | |- | ||
| <tt>''Z<sub>MAX</sub>''</tt> | | <tt>''Z<sub>MAX</sub>''</tt> | ||
− | | : maximum z-coordinate of the detector mesh | + | | : maximum z-coordinate of the detector mesh [in cm] |
|- | |- | ||
| <tt>''N<sub>Z</sub>''</tt> | | <tt>''N<sub>Z</sub>''</tt> | ||
Line 697: | Line 827: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | *The mesh detectors can be used to sub-divide the results into multiple | + | *The mesh detectors can be used to sub-divide the results into multiple evenly-spaced bins. |
+ | *For a Cartesian mesh the division is provided with separate entries in x-, y- and z- locations (<tt>'''dx'''</tt>, <tt>'''dy'''</tt> and <tt>'''dz'''</tt>, respectively). | ||
− | + | Detector evenly-spaced curvilinear mesh (<tt>'''dn'''</tt>):<span id="det_dn1"></span> | |
{| | {| | ||
| <tt>''TYPE''</tt> | | <tt>''TYPE''</tt> | ||
− | | : | + | | : type of curvilinear mesh - 1 = cylindrical (dimensions ''r'', ''θ'', ''z''), 2 = spherical (dimensions ''r'', ''θ'', ''φ'') |
|- | |- | ||
| <tt>''MIN<sub>n</sub>''</tt> | | <tt>''MIN<sub>n</sub>''</tt> | ||
− | | : | + | | : minimum value of ''n''-coordinate for the mesh division [in cm (''r'', ''z''), in degrees (''θ'', ''φ'')]. |
|- | |- | ||
| <tt>''MAX<sub>n</sub>''</tt> | | <tt>''MAX<sub>n</sub>''</tt> | ||
− | | : | + | | : maximum value of ''n''-coordinate for the mesh division [in cm (''r'', ''z''), in degrees (''θ'', ''φ'')]. |
|- | |- | ||
| <tt>''N<sub>n</sub>''</tt> | | <tt>''N<sub>n</sub>''</tt> | ||
− | | : | + | | : number of bins in the ''n''-coordinate direction (the radial division will be equal ''r'', not equal volume). |
+ | |} | ||
+ | |||
+ | <u>Notes:</u> | ||
+ | *All parameters must be provided, even for one- or two-dimensional curvilinear meshes. | ||
+ | *By default, the curvilinear mesh detectors use the global (universe 0) coordinate system for scoring. | ||
+ | **If the <tt>''TYPE''</tt> parameter is given as a negative value (e.g. -1) the lowest level coordinates are used instead. | ||
+ | |||
+ | |||
+ | Detector unevenly-spaced mesh (<tt>'''dn'''</tt>):<span id="det_dn2"></span> | ||
+ | |||
+ | {| | ||
+ | | <tt>''TYPE''</tt> | ||
+ | | : type of curvilinear mesh - 3 = unevenly-spaced orthogonal (dimensions ''x'', ''y'', ''z''), 4 = unevenly-spaced cylindrical (dimensions ''r'', ''θ'', ''z'') | ||
+ | |- | ||
+ | | <tt>''N<sub>n</sub>''</tt> | ||
+ | | : number of bins in the ''n''-coordinate direction | ||
|- | |- | ||
| <tt>''LIM<sub>nm</sub>''</tt> | | <tt>''LIM<sub>nm</sub>''</tt> | ||
− | | : | + | | : mesh ''m''-boundary in the ''n''-coordinate direction [in cm (''r'', ''z''), in degrees (''θ'', ''φ'')]. |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | *All parameters must be provided, even for one- or two-dimensional | + | *All parameters must be provided, even for one- or two-dimensional meshes. |
− | + | *By default, the unevenly-spaced mesh detectors use the global (universe 0) coordinate system for scoring. | |
− | *By default, the | + | **If the <tt>''TYPE''</tt> parameter is given as a negative value (e.g. -1) the lowest level coordinates are used instead. |
− | + | ||
− | + | Detector hexagonal mesh (<tt>'''dh'''</tt>):<span id="det_dh"></span> | |
{| | {| | ||
| <tt>''TYPE''</tt> | | <tt>''TYPE''</tt> | ||
− | | : | + | | : type of hexagonal mesh (2 = flat face perpendicular to x-axis, 3 = flat face perpendicular to y-axis) |
|- | |- | ||
| <tt>''X<sub>0</sub>''</tt>, <tt>''Y<sub>0</sub>''</tt> | | <tt>''X<sub>0</sub>''</tt>, <tt>''Y<sub>0</sub>''</tt> | ||
− | | : coordinates of mesh center | + | | : coordinates of mesh center [in cm] |
|- | |- | ||
| <tt>''PITCH''</tt> | | <tt>''PITCH''</tt> | ||
− | | : mesh pitch | + | | : mesh pitch [in cm] |
|- | |- | ||
− | | <tt>''N<sub>1</sub>''</tt>, <tt>''N<sub> | + | | <tt>''N<sub>1</sub>''</tt>, <tt>''N<sub>2</sub>''</tt> |
| : mesh size | | : mesh size | ||
|- | |- | ||
| <tt>''Z<sub>MIN</sub>''</tt> | | <tt>''Z<sub>MIN</sub>''</tt> | ||
− | | : minimum z-coordinate of the detector mesh | + | | : minimum z-coordinate of the detector mesh [in cm] |
|- | |- | ||
| <tt>''Z<sub>MAX</sub>''</tt> | | <tt>''Z<sub>MAX</sub>''</tt> | ||
− | | : maximum z-coordinate of the detector mesh | + | | : maximum z-coordinate of the detector mesh [in cm] |
|- | |- | ||
| <tt>''N<sub>Z</sub>''</tt> | | <tt>''N<sub>Z</sub>''</tt> | ||
Line 755: | Line 901: | ||
− | + | Detector unstructured mesh (<tt>'''dumsh'''</tt>):<span id="det_dumsh"></span> | |
{| | {| | ||
Line 770: | Line 916: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
*The polyhedral cells in [[Unstructured mesh-based geometry type|unstructured mesh based geometries]] are indexed. | *The polyhedral cells in [[Unstructured mesh-based geometry type|unstructured mesh based geometries]] are indexed. | ||
− | *This detector option allows collecting results from the cells into an arbitrary number of bins. One or multiple cells can be mapped into a single bin. | + | *This detector option allows collecting results from the cells into an arbitrary number of bins. |
+ | *One or multiple cells can be mapped into a single bin. | ||
Line 782: | Line 929: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
*The results are divided into multiple energy bins based on the grid structure. | *The results are divided into multiple energy bins based on the grid structure. | ||
− | *Energy grid structures are defined using the [[#ene (energy grid definition)|ene card]]. [[Pre-defined energy group structures]] can not be directly used in detectors, they have to be redefined using for example the | + | *Energy grid structures are defined using the [[#ene (energy grid definition)|ene card]]. |
− | *The energy boundaries of photon photon pulse-height and photon heat analog detectors are solely defined by the associated energy grid and not limited by the unionized energy grid defining the model. That means that analog detectors might collect scores below the physics model minimum energy bound, without a cut-off, if the energy grid sets it. | + | **[[Pre-defined energy group structures]] can not be directly used in detectors, they have to be redefined using for example the type "<tt>4</tt>" of [[#ene|ene card]]. |
+ | *The energy boundaries of photon photon pulse-height and photon heat analog detectors are solely defined by the associated energy grid and not limited by the unionized energy grid defining the model. | ||
+ | **That means that analog detectors might collect scores below the physics model minimum energy bound, without a cut-off, if the energy grid sets it. | ||
Line 799: | Line 948: | ||
− | + | Detector current / flux surface (<tt>'''ds'''</tt>):<span id="det_ds"></span> | |
{| | {| | ||
Line 811: | Line 960: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
*With this option the detector calculates the particle flux over or current through a given surface. | *With this option the detector calculates the particle flux over or current through a given surface. | ||
− | *The surface flux mode is invoked by setting the direction parameter to -2, otherwise this parameter defines the current direction with respect to surface normal. | + | *Flux mode: |
− | *Responses are not allowed with current detectors, and with flux detectors, the material name at the collision point has to be specified (<tt>"void"</tt> is not allowed). | + | **The surface flux mode is invoked by setting the direction parameter to "<tt>-2</tt>", otherwise this parameter defines the current direction with respect to surface normal. |
− | *The use of single-bin mesh and cell detectors is allowed to define the | + | *Current mode: |
− | *The surface is treated separate from the geometry, and its position is always relative to the origin of the root universe. This is the case even if the surface is part of the geometry in another universe. | + | **Responses are not allowed with current detectors, and with flux detectors, the material name at the collision point has to be specified (<tt>"void"</tt> is not allowed). |
+ | *The use of single-bin mesh and cell detectors is allowed to further define the surface and integration domain of the detector, from version 2.1.32 on. | ||
+ | *The surface is treated separate from the geometry, and its position is always relative to the origin of the root universe. | ||
+ | **This is the case even if the surface is part of the geometry in another universe. | ||
*The results are integrated over the surface area (other detectors integrate over volume). | *The results are integrated over the surface area (other detectors integrate over volume). | ||
Line 821: | Line 973: | ||
{| | {| | ||
− | | <tt>''COS<sub> | + | | <tt>''COS<sub>X</sub>''</tt> |
| : component of the direction vector parallel to x-axis | | : component of the direction vector parallel to x-axis | ||
|- | |- | ||
Line 835: | Line 987: | ||
− | + | Detector super-imposed track-length (<tt>'''dtl'''</tt>):<span id="det_dtl"></span> | |
{| | {| | ||
Line 844: | Line 996: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
*This option can be used to apply the track-length estimator for calculating reaction rates inside regions defined by a single surface (sphere, cylinder, cuboid, etc.) | *This option can be used to apply the track-length estimator for calculating reaction rates inside regions defined by a single surface (sphere, cylinder, cuboid, etc.) | ||
+ | *The surface is treated separate from the geometry, and its position is always relative to the origin of the root universe. | ||
+ | **This is the case even if the surface is part of the geometry in another universe. | ||
*The purpose of the track-length detector is to provide better statistics for special applications (activation wire measurements, etc.). | *The purpose of the track-length detector is to provide better statistics for special applications (activation wire measurements, etc.). | ||
− | * | + | *For more information see the detailed description on [[delta- and surface-tracking]] and [[Result estimators#Implicit estimators|result estimators]]. |
Line 855: | Line 1,009: | ||
|- | |- | ||
| <tt>''FRAC''</tt> | | <tt>''FRAC''</tt> | ||
− | | : fraction of recorded scores and | + | | : fraction of recorded scores and ASCII/binary option (positive value = ASCII, negative value = binary) |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
*This option can be used to write the scored points in a file. | *This option can be used to write the scored points in a file. | ||
− | |||
*The fraction parameters gives the probability that the score is written in the file and it can be used to reduce the file size in long simulations. | *The fraction parameters gives the probability that the score is written in the file and it can be used to reduce the file size in long simulations. | ||
− | *Source files can be read using the <tt>'''sf'''</tt> entry of [[#src_sf| | + | *When used with the surface current detector this option can provide surface source distributions for other calculations. |
+ | *Source files can be read using the <tt>'''sf'''</tt> entry of the [[#src_sf|src card]]. | ||
− | + | Detector special types (<tt>'''dt'''</tt>):<span id="det_dt"></span> | |
{| | {| | ||
Line 875: | Line 1,029: | ||
|} | |} | ||
− | The types are: | + | The possible special types are: |
− | {| | + | |
+ | ::{| class="wikitable" style="text-align: left;" | ||
+ | ! Type | ||
+ | ! Description | ||
+ | ! Notes | ||
+ | |- | ||
| -1 | | -1 | ||
− | | | + | | cumulative spectrum |
+ | | use with energy binning ('''de''') | ||
|- | |- | ||
| -2 | | -2 | ||
− | | | + | | division by energy width |
+ | | use with energy binning ('''de''') | ||
|- | |- | ||
| -3 | | -3 | ||
− | | | + | | division by lethargy width |
+ | | use with energy binning ('''de''') | ||
|- | |- | ||
| -4 | | -4 | ||
− | | | + | | sum over cell or material bins |
+ | | use with cell and/or material binning ('''dc''', '''dm''') | ||
|- | |- | ||
| -5 | | -5 | ||
− | | | + | | importance weighting |
+ | | - | ||
|- | |- | ||
| -6 | | -6 | ||
− | | | + | | sum over number of scores |
+ | | - | ||
|- | |- | ||
| 2 | | 2 | ||
− | | | + | | multiply result with another detector defined by <tt>''PARAM''</tt> |
+ | | bin-compatibility | ||
|- | |- | ||
| 3 | | 3 | ||
− | | | + | | divide result with another detector defined by <tt>''PARAM''</tt> |
+ | | bin-compatibility | ||
|- | |- | ||
| 4 | | 4 | ||
− | | | + | | multiply response function by (local) temperature |
+ | | - | ||
+ | |- | ||
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | + | *Type "<tt>3</tt> can be used to calculate flux-weighted averages (microscopic and macroscopic cross sections, etc.). | |
− | *Type | + | |
− | + | ||
− | + | ||
− | + | Detector history collection flag (<tt>'''dhis'''</tt>):<span id="det_dhis"></span> | |
{| | {| | ||
| <tt>''OPT''</tt> | | <tt>''OPT''</tt> | ||
− | | : option to | + | | : option to switch on (1/yes) or off (0/no) the collection of histories, batch-wise results |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
*When this option is set, the batch-wise results are printed in the history output file, <tt>[input]_stats.m</tt>. | *When this option is set, the batch-wise results are printed in the history output file, <tt>[input]_stats.m</tt>. | ||
+ | *The statistical tests are described in a related report<ref name="stat_tests">Kaltiaisenaho, T. ''"Statistical tests and the underestimation of variance in Serpent 2."'' VTT-R-00371-14, VTT Technical Research Centre of Finland, [https://serpent.vtt.fi/serpent/download/VTT-R-00371-14.pdf 2014]</ref>. | ||
*''Note to developers: statistical tests should be documented'' | *''Note to developers: statistical tests should be documented'' | ||
− | Detector flagging (<tt>'''dfl'''</tt>):<span id="det_dfl"></span> | + | Detector score flagging (<tt>'''dfl'''</tt>):<span id="det_dfl"></span> |
{| | {| | ||
Line 932: | Line 1,099: | ||
| <tt>''OPT''</tt> | | <tt>''OPT''</tt> | ||
| : flagging option (0 = reset if scored, 1 = set if scored, -2/2 score if set -3/3 score if not set) | | : flagging option (0 = reset if scored, 1 = set if scored, -2/2 score if set -3/3 score if not set) | ||
+ | |} | ||
+ | |||
+ | The possible flagging options are: | ||
+ | |||
+ | ::{| class="wikitable" style="text-align: left;" | ||
+ | ! Flag | ||
+ | ! Description | ||
+ | ! Notes | ||
+ | |- | ||
+ | | <tt>0</tt> | ||
+ | | reset if scored | ||
+ | | - | ||
+ | |- | ||
+ | | <tt>1</tt> | ||
+ | | set if scored | ||
+ | | - | ||
+ | |- | ||
+ | | <tt>-2/2</tt> | ||
+ | | score if set | ||
+ | | 2 (apply OR-type logic), -2 (apply AND-type logic) | ||
+ | |- | ||
+ | | <tt>-3/3</tt> | ||
+ | | score if not set | ||
+ | | 3 (apply OR-type logic), -3 (apply AND-type logic) | ||
+ | |- | ||
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
*Detector flagging allows limiting detector scores to histories which have already contributed to another score. | *Detector flagging allows limiting detector scores to histories which have already contributed to another score. | ||
− | * | + | *Scoring logic: |
+ | ** OR-type logic: detector is scored if any of the associated flags is set/unset | ||
+ | ** AND-type logic: detector is scored if all the associated flags are set/unset | ||
− | + | Detector activation (<tt>'''da'''</tt>):<span id="det_da"></span> | |
{| | {| | ||
Line 946: | Line 1,140: | ||
|- | |- | ||
| <tt>''FLX''</tt> | | <tt>''FLX''</tt> | ||
− | | : flux applied to activation | + | | : flux applied to activation [in 1/cm<sup>2</sup>s] |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | *Activation detector allows performing activation calculation for materials that are not part of the geometry. The flux spectrum applied to neutron irradiation is taken from the detector scores. The absolute flux level can be set using the <tt>''FLX''</tt> parameter. | + | *Activation detector allows performing activation calculation for materials that are not part of the geometry. |
− | *Requires neutron transport simulation and burnup mode. The material | + | *Flux applied to activation: |
+ | **The flux spectrum applied to neutron irradiation is taken from the detector scores. | ||
+ | **The absolute flux level can be set using the <tt>''FLX''</tt> parameter. | ||
+ | ***There is a special entry for the <tt>''FLX''</tt> parameter: | ||
+ | **** "<tt>-1</tt>": in this case, the flux magnitude is also taken from the detector scores. | ||
+ | *Requires neutron transport simulation and burnup mode. | ||
+ | *The detector associated material must be burnable, and cannot part of the actual geometry. | ||
+ | *The volume of the material, aka detector, must be defined using the <tt>'''dv'''</tt> parameter. | ||
*Since the activated material is not part of the physical geometry, this option should be applied only to small samples and other activation calculations in which the isotopic changes do not significantly affect the neutronics. | *Since the activated material is not part of the physical geometry, this option should be applied only to small samples and other activation calculations in which the isotopic changes do not significantly affect the neutronics. | ||
− | Functional Expansion Tally | + | Detector Functional Expansion Tally, FET (<tt>'''dfet'''</tt>):<span id="det_dfet"></span> |
{| | {| | ||
Line 965: | Line 1,166: | ||
|} | |} | ||
− | {| class="wikitable" style="text-align: left;" | + | ::{| class="wikitable" style="text-align: left;" |
! Geometry | ! Geometry | ||
! <tt>PARAMS</tt> | ! <tt>PARAMS</tt> | ||
Line 989: | Line 1,190: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | *"-1" can be supplied as an <tt>''ORDER''</tt> <tt>PARAM</tt> to use the built-in default values | + | *"<tt>-1</tt>" can be supplied as an <tt>''ORDER''</tt> <tt>PARAM</tt> to use the built-in default values |
*It is not recommended to configure a single FET detector to span multiple different material regions—use individual detectors for each region instead | *It is not recommended to configure a single FET detector to span multiple different material regions—use individual detectors for each region instead | ||
*Specifics of this implementation: | *Specifics of this implementation: | ||
Line 1,000: | Line 1,201: | ||
*From version 2.2.0 and on, FET-based detectors follow the standard normalization set in the calculation. The volume standards for detectors are set as default value for FET-based detectors, meaning detectors are not divided by the physical volume (allowing the use of volume detector '''dv'''). | *From version 2.2.0 and on, FET-based detectors follow the standard normalization set in the calculation. The volume standards for detectors are set as default value for FET-based detectors, meaning detectors are not divided by the physical volume (allowing the use of volume detector '''dv'''). | ||
*In version 2.2.0, the relative error evaluation associated with FET-based detectors has been revisited. | *In version 2.2.0, the relative error evaluation associated with FET-based detectors has been revisited. | ||
+ | |||
Detector pulse-height energy broadening (<tt>'''dphb'''</tt>):<span id="det_dphb"></span> | Detector pulse-height energy broadening (<tt>'''dphb'''</tt>):<span id="det_dphb"></span> | ||
Line 1,024: | Line 1,226: | ||
=== div (divisor definition)<span id="div"></span> === | === div (divisor definition)<span id="div"></span> === | ||
− | '''div''' ''MAT'' [ '''sep''' ''LVL'' ] | + | '''div''' ''MAT'' [ [[#div_sep|'''sep''']] ''LVL'' ] |
− | [ '''subx''' ''N<sub>X</sub>'' ''X<sub>MIN</sub>'' ''X<sub>MAX</sub>'' ] | + | [ [[#div_subx1|'''subx''']] ''N<sub>X</sub>'' ''X<sub>MIN</sub>'' ''X<sub>MAX</sub>'' ] |
− | [ '''suby''' ''N<sub>Y</sub>'' ''Y<sub>MIN</sub>'' ''Y<sub>MAX</sub>'' ] | + | [ [[#div_subx2|'''subx''']] ''N<sub>X</sub>'' ''X<sub>1</sub>'' ''X<sub>2</sub>'' ... ''X<sub>N+1</sub>'' ] |
− | [ '''subz''' ''N<sub>Z</sub>'' ''Z<sub>MIN</sub>'' ''Z<sub>MAX</sub>'' ] | + | [ [[#div_suby1|'''suby''']] ''N<sub>Y</sub>'' ''Y<sub>MIN</sub>'' ''Y<sub>MAX</sub>'' ] |
− | [ '''subr''' ''N<sub>R</sub>'' ''R<sub>MIN</sub>'' ''R<sub>MAX</sub>'' ] | + | [ [[#div_suby2|'''suby''']] ''N<sub>Y</sub>'' ''Y<sub>1</sub>'' ''Y<sub>2</sub>'' ... ''Y<sub>N+1</sub>'' ] |
− | [ '''subs''' ''N<sub>S</sub>'' ''S<sub>0</sub>'' ] | + | [ [[#div_subz1|'''subz''']] ''N<sub>Z</sub>'' ''Z<sub>MIN</sub>'' ''Z<sub>MAX</sub>'' ] |
− | [ '''lims''' ''FLAG'' ] | + | [ [[#div_subz2|'''subz''']] ''N<sub>Z</sub>'' ''Z<sub>1</sub>'' ''Z<sub>2</sub>'' ... ''Z<sub>N+1</sub>'' ] |
− | Divides a material into a number of sub-zones. | + | [ [[#div_subr1|'''subr''']] ''N<sub>R</sub>'' ''R<sub>MIN</sub>'' ''R<sub>MAX</sub>'' ] |
+ | [ [[#div_subr2|'''subr''']] ''N<sub>R</sub>'' ''R<sub>1</sub>'' ''R<sub>2</sub>'' ... ''R<sub>N+1</sub>'' ] | ||
+ | [ [[#div_subs1|'''subs''']] ''N<sub>S</sub>'' ''S<sub>0</sub>'' ] | ||
+ | [ [[#div_subs2|'''subs''']] ''N<sub>S</sub>'' ''S<sub>1</sub>'' ''S<sub>2</sub>'' ... ''S<sub>N+1</sub>'' ] | ||
+ | [ [[#div_peb|'''peb''']] ''PBED'' ''N<sub>UNI</sub>'' [ ''UNI<sub>1</sub>'' ... ''UNI<sub>N</sub>'' ] ] | ||
+ | [ [[#div_lims|'''lims''']] ''FLAG'' ] | ||
+ | Divides a material into a number of sub-zones. The first parameter: | ||
{| | {| | ||
| <tt>''MAT''</tt> | | <tt>''MAT''</tt> | ||
| : name of the divided material | | : name of the divided material | ||
− | |- | + | |} |
+ | |||
+ | The remaining parameters are defined by separate key words followed by the input values. | ||
+ | |||
+ | <u>Notes:</u> | ||
+ | *A single div card may include one or several sub-divisions. | ||
+ | *As general rule: | ||
+ | ** if the number of zones associated with a sub-division is <u>positive</u>, the sub-division is <u>equal volume</u> (see below) | ||
+ | ** if the number of zones associated with a sub-division is <u>negative</u>, the subdivision is <u>user-defined volume</u> (see below) | ||
+ | *If a material is not divided, all occurrences of it are treated as a single depletion zone (except for depleted materials defined in pin structures: pin-type division). | ||
+ | *The use of automated instead of manual depletion zone division saves memory, which may become significant in very large burnup calculation problems (see [[#set opti|set opti]]). | ||
+ | *The volumes of the divided materials must be set manually (see [[#set mvol|set mvol]] option) or automatically, via the Monte Carlo checker-routine (see [[#set mcvol|set mcvol]] option or [[Installing and running Serpent#Running Serpent|''-checkvolumes'']] command line option). | ||
+ | **For a more detailed description, check [[Defining material volumes|Defining material volumes]]). | ||
+ | *For more information, see detailed description on [[automated depletion zone division]]. | ||
+ | |||
+ | |||
+ | <u>Sub-division types:</u> | ||
+ | |||
+ | Sub-division geometry level (<tt>'''sep'''</tt>): <span id="div_sep"></span> | ||
+ | |||
+ | {| | ||
| <tt>''LVL''</tt> | | <tt>''LVL''</tt> | ||
− | | : geometry level at which the | + | | : geometry level at which the material-wise division takes place (0 = no division, 1 = last level, 2 = 2nd last level, etc.) |
|- | |- | ||
+ | |} | ||
+ | |||
+ | <u>Notes:</u> | ||
+ | *The sub-division criterion is the geometry level. | ||
+ | *The level number is counted backwards from the last one, i.e. level "<tt>1</tt>" is the last level. | ||
+ | *Use examples: | ||
+ | **to sub-divide the fuel in large LWR core into separate depletion zones on assembly-, instead of pin-basis. | ||
+ | **to sub-divide HTGR fuel kernels into depletion zones on compact- or pebble-basis. | ||
+ | |||
+ | |||
+ | Sub-division Cartesian mesh, <u>equal volume</u> (<tt>'''subx'''</tt>, <tt>'''suby'''</tt> and <tt>'''subz'''</tt>):<span id="div_subx1"></span><span id="div_suby1"></span><span id="div_subz1"></span> | ||
+ | |||
+ | {| | ||
| <tt>''N<sub>X</sub>''</tt> | | <tt>''N<sub>X</sub>''</tt> | ||
− | | : number of x-zones | + | | : number of x-zones (positive value) |
|- | |- | ||
| <tt>''X<sub>MIN</sub>''</tt> | | <tt>''X<sub>MIN</sub>''</tt> | ||
− | | : minimum x-coordinate | + | | : minimum x-coordinate [in cm] |
|- | |- | ||
| <tt>''X<sub>MAX</sub>''</tt> | | <tt>''X<sub>MAX</sub>''</tt> | ||
− | | : maximum x-coordinate | + | | : maximum x-coordinate [in cm] |
− | + | ||
− | + | ||
− | + | ||
|- | |- | ||
| <tt>''N<sub>Y</sub>''</tt> | | <tt>''N<sub>Y</sub>''</tt> | ||
− | | : number of y-zones | + | | : number of y-zones (positive value) |
|- | |- | ||
| <tt>''Y<sub>MIN</sub>''</tt> | | <tt>''Y<sub>MIN</sub>''</tt> | ||
− | | : minimum y-coordinate | + | | : minimum y-coordinate [in cm] |
|- | |- | ||
| <tt>''Y<sub>MAX</sub>''</tt> | | <tt>''Y<sub>MAX</sub>''</tt> | ||
− | | : maximum y-coordinate | + | | : maximum y-coordinate [in cm] |
− | + | ||
− | + | ||
− | + | ||
|- | |- | ||
| <tt>''N<sub>Z</sub>''</tt> | | <tt>''N<sub>Z</sub>''</tt> | ||
− | | : number of z-zones | + | | : number of z-zones (positive value) |
|- | |- | ||
| <tt>''Z<sub>MIN</sub>''</tt> | | <tt>''Z<sub>MIN</sub>''</tt> | ||
− | | : minimum z-coordinate | + | | : minimum z-coordinate [in cm] |
|- | |- | ||
| <tt>''Z<sub>MAX</sub>''</tt> | | <tt>''Z<sub>MAX</sub>''</tt> | ||
− | | : maximum z-coordinate (cm) | + | | : maximum z-coordinate [in cm] |
+ | |- | ||
+ | |} | ||
+ | |||
+ | <u>Notes:</u> | ||
+ | * An equal volume sub-division is performed in the given dimension. | ||
+ | * The value of the parameter <tt>''N<sub>n</sub>''</tt> which defines the number of zones in the given dimension must be positive. | ||
+ | * For a Cartesian mesh sub-division, a separate entry in x-, y-, z- directions is provided (<tt>'''subx'''</tt>, <tt>'''suby'''</tt> and <tt>'''subz'''</tt>, respectively). | ||
+ | |||
+ | |||
+ | Sub-division Cartesian mesh, <u>user-defined volume</u> (<tt>'''subx'''</tt>, <tt>'''suby'''</tt> and <tt>'''subz'''</tt>):<span id="div_subx2"></span><span id="div_suby2"></span><span id="div_subz2"></span> | ||
+ | |||
+ | {| | ||
+ | | <tt>''N<sub>X</sub>''</tt> | ||
+ | | : number of x-zones (negative value) | ||
+ | |- | ||
+ | | <tt>''X<sub>n</sub>''</tt> | ||
+ | | : x-coordinate boundaries [in cm] | ||
+ | |- | ||
+ | | <tt>''N<sub>Y</sub>''</tt> | ||
+ | | : number of y-zones (negative value) | ||
+ | |- | ||
+ | | <tt>''Y<sub>n</sub>''</tt> | ||
+ | | : y-coordinate boundaries [in cm] | ||
+ | |- | ||
+ | | <tt>''N<sub>Z</sub>''</tt> | ||
+ | | : number of z-zones (negative value) | ||
|- | |- | ||
| <tt>''Z<sub>n</sub>''</tt> | | <tt>''Z<sub>n</sub>''</tt> | ||
− | | : z-coordinate boundaries | + | | : z-coordinate boundaries [in cm] |
|- | |- | ||
+ | |} | ||
+ | |||
+ | <u>Notes:</u> | ||
+ | * An user-defined volume sub-division is performed in the given dimension. | ||
+ | * The value of the parameter <tt>''N<sub>n</sub>''</tt> which defines the number of zones in the given dimension must be negative. | ||
+ | * For a Cartesian mesh sub-division, a separate entry in x-, y-, z- directions is provided (<tt>'''subx'''</tt>, <tt>'''suby'''</tt> and <tt>'''subz'''</tt>, respectively). | ||
+ | |||
+ | |||
+ | Sub-division cylindrical annular mesh, <u>equal volume</u> (<tt>'''subr'''</tt>):<span id="div_subr1"></span> | ||
+ | |||
+ | {| | ||
| <tt>''N<sub>R</sub>''</tt> | | <tt>''N<sub>R</sub>''</tt> | ||
− | | : number of radial zones | + | | : number of radial-zones (positive value) |
|- | |- | ||
| <tt>''R<sub>MIN</sub>''</tt> | | <tt>''R<sub>MIN</sub>''</tt> | ||
− | | : minimum radial coordinate | + | | : minimum radial-coordinate [in cm] |
|- | |- | ||
| <tt>''R<sub>MAX</sub>''</tt> | | <tt>''R<sub>MAX</sub>''</tt> | ||
− | | : maximum radial coordinate | + | | : maximum radial-coordinate [in cm] |
+ | |- | ||
+ | |} | ||
+ | |||
+ | <u>Notes:</u> | ||
+ | * An equal volume radial sub-division is performed (annular-type sub-division) | ||
+ | * The value of the parameter <tt>''N<sub>R</sub>''</tt> which defines the number of zones in the given dimension must be positive. | ||
+ | |||
+ | |||
+ | Sub-division cylindrical annular mesh, <u>user-defined volume</u> (<tt>'''subr'''</tt>):<span id="div_subr2"></span> | ||
+ | |||
+ | {| | ||
+ | | <tt>''N<sub>R</sub>''</tt> | ||
+ | | : number of radial-zones (negative value) | ||
|- | |- | ||
| <tt>''R<sub>n</sub>''</tt> | | <tt>''R<sub>n</sub>''</tt> | ||
− | | : radial coordinate boundaries | + | | : radial-coordinate boundaries [in cm] |
|- | |- | ||
+ | |} | ||
+ | |||
+ | <u>Notes:</u> | ||
+ | * An user-defined volume radial sub-division is performed (annular-type sub-division) | ||
+ | * The value of the parameter <tt>''N<sub>R</sub>''</tt> which defines the number of zones in the given dimension must be negative. | ||
+ | |||
+ | |||
+ | Sub-division cylindrical sector mesh, <u>equal volume</u> (<tt>'''subs'''</tt>):<span id="div_subs1"></span> | ||
+ | |||
+ | {| | ||
| <tt>''N<sub>S</sub>''</tt> | | <tt>''N<sub>S</sub>''</tt> | ||
− | | : number of angular | + | | : number of angular-zones (negative value) |
|- | |- | ||
| <tt>''S<sub>0</sub>''</tt> | | <tt>''S<sub>0</sub>''</tt> | ||
− | | : zero position of angular division | + | | : zero position of angular division [in degrees] |
+ | |- | ||
+ | |} | ||
+ | |||
+ | <u>Notes:</u> | ||
+ | * An equal volume angular sub-division is performed (sector-type sub-division) | ||
+ | * The value of the parameter <tt>''N<sub>S</sub>''</tt> which defines the number of zones in the angular dimension must be positive. | ||
+ | |||
+ | |||
+ | Sub-division cylindrical sector mesh, <u>user-defined volume</u> (<tt>'''subs'''</tt>):<span id="div_subs2"></span> | ||
+ | |||
+ | {| | ||
+ | | <tt>''N<sub>S</sub>''</tt> | ||
+ | | : number of angular-zones | ||
|- | |- | ||
| <tt>''S<sub>n</sub>''</tt> | | <tt>''S<sub>n</sub>''</tt> | ||
− | | : angular-sector boundaries | + | | : angular-sector boundaries [in degrees] |
|- | |- | ||
− | |||
− | |||
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
+ | * An user-defined volume angular sub-division is performed (sector-type sub-division) | ||
+ | * The value of the parameter <tt>''N<sub>S</sub>''</tt> which defines the number of zones in the angular dimension must be negative. | ||
+ | * The manually-spaced angular-sector boundaries <tt>''S<sub>n</sub>''</tt> must cover the full/360 degrees angular space. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | Sub-division pebble-bed structure (<tt>'''peb'''</tt>): <span id="div_peb"></span> | |
− | + | {| | |
+ | | <tt>''PBED''</tt> | ||
+ | | : stochastic particle / pebble-bed structure | ||
+ | |- | ||
+ | | <tt>''N<sub>UNI</sub>''</tt> | ||
+ | | : number of universes to link related to the <tt>''PBED''</tt> structure (special case: 0 = link to all) | ||
+ | |- | ||
+ | | <tt>''UNI<sub>N</sub>''</tt> | ||
+ | |: list of universes to link (non-zero number of universes) | ||
+ | |- | ||
+ | |} | ||
− | + | <u>Notes:</u> | |
+ | *The pebble bed-based sub-division divides each item in a pebble bed universe as its own item. | ||
+ | *It features a speed-up on the depletion zone division indexing process with large number of pebble bed structures. | ||
− | |||
− | + | Sub-division limit enforcement (<tt>'''lims'''</tt>): <span id="div_lims"></span> | |
− | + | {| | |
+ | | <tt>''FLAG''</tt> | ||
+ | | : flag for mapping regions outside (material) limits to divide material: on (1/yes) or off (0/no). The default option is "<tt>off</tt>" | ||
+ | |- | ||
+ | |} | ||
− | + | === dtrans (detector mesh transformation)<span id="dtrans"></span> === | |
+ | |||
+ | Defines detector mesh transformations. Shortcut for "trans d". | ||
+ | |||
+ | <u>Notes:</u> | ||
+ | *The parameters associated with the transformation follow the standard transformation cards syntax without '''trans''' <tt>''TYPE''</tt> identifier. | ||
+ | *See [[#trans (transformations)|transformations]]. | ||
+ | |||
+ | === ene (energy grid definition)<span id="ene"></span> === | ||
+ | '''ene''' ''NAME'' ''TYPE'' [ ... ] | ||
Defines an energy grid structure. Input values: | Defines an energy grid structure. Input values: | ||
Line 1,132: | Line 1,456: | ||
|<tt>''NAME''</tt> | |<tt>''NAME''</tt> | ||
|: energy grid name | |: energy grid name | ||
+ | |- | ||
+ | |<tt>''TYPE''</tt> | ||
+ | |: energy grid type | ||
+ | |- | ||
+ | |} | ||
+ | |||
+ | The remaining parameters are type-dependent. | ||
+ | |||
+ | The available <u>energy grid structure types</u> are: | ||
+ | ::{| class="wikitable" style="text-align: left;" | ||
+ | ! Type | ||
+ | ! Description | ||
+ | |- | ||
+ | | [[#ene_1|<tt>1</tt>]] | ||
+ | | arbitrary defined grid | ||
+ | |- | ||
+ | | [[#ene_2|<tt>2</tt>]] | ||
+ | | equal energy-width bins | ||
+ | |- | ||
+ | | [[#ene_3|<tt>3</tt>]] | ||
+ | | equal lethargy-width bins | ||
+ | |- | ||
+ | | [[#ene_4|<tt>4</tt>]] | ||
+ | | [[pre-defined energy group structures|pre-defined energy group structure]] | ||
+ | |- | ||
+ | |} | ||
+ | |||
+ | The syntax of the available types is as follows: | ||
+ | |||
+ | '''ene''' ''NAME'' '''1''' ''E<sub>0</sub>'' ''E<sub>1</sub>'' ... <span id="ene_1"></span> | ||
+ | |||
+ | {| | ||
|- | |- | ||
|<tt>''E<sub>i</sub>''</tt> | |<tt>''E<sub>i</sub>''</tt> | ||
− | |: bin boundaries | + | |: bin boundaries [in MeV] |
+ | |- | ||
+ | |} | ||
+ | |||
+ | '''ene''' ''NAME'' '''2''' ''N'' ''E<sub>min</sub>'' ''E<sub>max</sub>'' <span id="ene_2"></span> | ||
+ | |||
+ | {| | ||
|- | |- | ||
|<tt>''N''</tt> | |<tt>''N''</tt> | ||
− | |: number of equi-width bins | + | |: number of equi-width bins |
|- | |- | ||
|<tt>''E<sub>min</sub>''</tt> | |<tt>''E<sub>min</sub>''</tt> | ||
− | |: minimum energy | + | |: minimum energy [in MeV] |
|- | |- | ||
|<tt>''E<sub>max</sub>''</tt> | |<tt>''E<sub>max</sub>''</tt> | ||
− | |: maximum energy | + | |: maximum energy [in MeV] |
+ | |- | ||
+ | |} | ||
+ | |||
+ | '''ene''' ''NAME'' '''3''' ''N'' ''E<sub>min</sub>'' ''E<sub>max</sub>'' <span id="ene_3"></span> | ||
+ | |||
+ | {| | ||
+ | |- | ||
+ | |<tt>''N''</tt> | ||
+ | |: number of equi-width bins | ||
+ | |- | ||
+ | |<tt>''E<sub>min</sub>''</tt> | ||
+ | |: minimum energy [in MeV] | ||
+ | |- | ||
+ | |<tt>''E<sub>max</sub>''</tt> | ||
+ | |: maximum energy [in MeV] | ||
+ | |- | ||
+ | |} | ||
+ | |||
+ | '''ene''' ''NAME'' '''4''' ''GRID'' <span id="ene_4"></span> | ||
+ | |||
+ | {| | ||
|- | |- | ||
|<tt>''GRID''</tt> | |<tt>''GRID''</tt> | ||
− | |: name of the pre-defined | + | |: name of the [[pre-defined energy group structures|pre-defined energy group structure]] |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | + | *Energy grid structures are used for several purposes, e.g. with detectors ('''de''' entry in the [[#det_de|det card]]). | |
− | + | ||
− | *Energy grid structures are used for several purposes, | + | |
− | + | ||
=== ftrans (fill transformation)<span id="ftrans"></span> === | === ftrans (fill transformation)<span id="ftrans"></span> === | ||
− | See [[#trans (transformations)|transformations]]. | + | Defines fill transformations. Shortcut for "<tt>trans f</tt>". |
+ | |||
+ | <u>Notes:</u> | ||
+ | *The parameters associated with the transformation follow the standard transformation cards syntax without '''trans''' <tt>''TYPE''</tt> identifier. | ||
+ | *See [[#trans (transformations)|transformations]]. | ||
=== fun (function definition)<span id="fun"></span> === | === fun (function definition)<span id="fun"></span> === | ||
Line 1,170: | Line 1,554: | ||
|- | |- | ||
|<tt>''TYPE''</tt> | |<tt>''TYPE''</tt> | ||
− | |: function type | + | |: function type |
|} | |} | ||
− | The | + | The remaining input values are type-dependent. |
− | '''fun''' ''NAME'' '''1''' ''INTT'' ''X<sub>1</sub>'' ''F<sub>1</sub>'' ''X<sub>2</sub>'' ''F<sub>2</sub>'' ... | + | <u>Notes:</u> |
+ | * The defined function is linked to detector response using [[ENDF reaction MT's and macroscopic reaction numbers|MT -100 ]] (syntax: dr -100 ''NAME''). | ||
+ | * The defined function currently is only supported as a flux-based function, aka, flux multiplier. | ||
+ | |||
+ | The available function types are: | ||
+ | ::{| class="wikitable" style="text-align: left;" | ||
+ | ! Type | ||
+ | ! Description | ||
+ | |- | ||
+ | | [[#fun_1|<tt>1</tt>]] | ||
+ | | point-wise tabular data | ||
+ | |- | ||
+ | |} | ||
+ | |||
+ | The syntax for the available types is as follows: | ||
+ | |||
+ | '''fun''' ''NAME'' '''1''' ''INTT'' ''X<sub>1</sub>'' ''F<sub>1</sub>'' ''X<sub>2</sub>'' ''F<sub>2</sub>'' ... <span id="fun_1"></span> | ||
− | |||
{| | {| | ||
|<tt>''INTT''</tt> | |<tt>''INTT''</tt> | ||
Line 1,185: | Line 1,584: | ||
|: are the tabulated variable-value pairs | |: are the tabulated variable-value pairs | ||
|} | |} | ||
− | |||
− | |||
− | |||
− | |||
=== hisv (history variation matrix definition)<span id="hisv"></span> === | === hisv (history variation matrix definition)<span id="hisv"></span> === | ||
Line 1,199: | Line 1,594: | ||
{| | {| | ||
| <tt>''BU<sub>n</sub>''</tt> | | <tt>''BU<sub>n</sub>''</tt> | ||
− | | : burnup steps at which the branches are invoked | + | | : burnup steps at which the branches are invoked (positive value = burnup [in MWd/kg], negative value = time [in d]) |
|- | |- | ||
| <tt>''NBR<sub>n</sub>''</tt> | | <tt>''NBR<sub>n</sub>''</tt> | ||
Line 1,210: | Line 1,605: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
*The automated burnup sequence defined by the hisv card follows the same principle as the [[#coef|coef]] input card. | *The automated burnup sequence defined by the hisv card follows the same principle as the [[#coef|coef]] input card. | ||
− | *The hisv card performs multiple depletions within a single depletion calculation following the historical variation sequence | + | *The hisv card performs multiple depletions within a single depletion calculation following the historical variation sequence. |
− | + | **It performs a restart at each of the listed burnup points, where it applies the variations defined in the listed branches for the given burnup point. | |
*The hisv card is used together with the [[#branch|branch]] card. | *The hisv card is used together with the [[#branch|branch]] card. | ||
=== ifc (interface file)<span id="ifc"></span> === | === ifc (interface file)<span id="ifc"></span> === | ||
− | '''ifc''' ''FILE'' ['''setinmat''' ''N<sub>MAT</sub>'' ''MAT<sub>1</sub>'' ''MAT<sub>2</sub>'' ... ''MAT<sub>N<sub>MAT</sub></sub>'' ] | + | '''ifc''' ''FILE'' [ [[#ifc_setinmat|'''setinmat''']] ''N<sub>MAT</sub>'' ''MAT<sub>1</sub>'' ''MAT<sub>2</sub>'' ... ''MAT<sub>N<sub>MAT</sub></sub>'' ] |
− | ['''setoutmat''' ''N<sub>MAT</sub>'' ''MAT<sub>1</sub>'' ''MAT<sub>2</sub>'' ... ''MAT<sub>N<sub>MAT</sub></sub>'' ] | + | [ [[#ifc_setoutmat|'''setoutmat''']] ''N<sub>MAT</sub>'' ''MAT<sub>1</sub>'' ''MAT<sub>2</sub>'' ... ''MAT<sub>N<sub>MAT</sub></sub>'' ] |
− | Links a [[Multi-physics interface|multi-physics interface]] file to be used with the current input. | + | Links a [[Multi-physics interface|multi-physics interface]] file to be used with the current input. The first parameter: |
{| | {| | ||
Line 1,226: | Line 1,621: | ||
|} | |} | ||
− | The | + | The remaining parameters are defined by separate key words followed by the input values, being optional. |
− | + | <u>Notes:</u> | |
+ | *See also [[Coupled multi-physics calculations]]. | ||
− | + | ||
+ | <u>Optional entries:</u> | ||
+ | |||
+ | Interface input materials (<tt>'''setinmat'''</tt>): <span id="mix_setinmat"></span> | ||
{| | {| | ||
− | |<tt>''N<sub>MAT</sub>''</tt> | + | | <tt>''N<sub>MAT</sub>''</tt> |
− | |: number of materials to link to the interface | + | | : number of input materials to link to the interface |
|- | |- | ||
− | |<tt>''MAT<sub> | + | | <tt>''MAT<sub>n</sub>''</tt> |
− | |: name of the '' | + | | : name of the ''n''-th input material linked to the interface |
+ | |} | ||
+ | |||
+ | <u>Notes:</u> | ||
+ | *It adds the possibility to link multiple input materials to the same interface, i.e. the same interface gives temperatures and densities (density factors) for multiple materials. | ||
+ | *If multiple input materials are linked to the interface using the option, the densities in the interface file must be given as density factors, i.e. relative to the material card density (values between 0 and 1). | ||
+ | *If the interface is not updated, the entry is not eligible. | ||
+ | *If the regular mesh-based interface is used and power is tallied in pin-type objects, the entry is not eligible. | ||
+ | *The option '''<tt>setinmat</tt>''' is referred as '''<tt>setmat</tt>''' up to version 2.1.31. | ||
+ | |||
+ | |||
+ | Interface output materials (<tt>'''setoutmat'''</tt>): <span id="mix_setoutmat"></span> | ||
+ | |||
+ | {| | ||
+ | | <tt>''N<sub>MAT</sub>''</tt> | ||
+ | | : number of output materials to link to the interface | ||
|- | |- | ||
+ | | <tt>''MAT<sub>n</sub>''</tt> | ||
+ | | : name of the ''n''-th output material linked to the interface | ||
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | * If multiple materials are linked to the interface using the | + | *It adds the possibility to link multiple output materials to the same interface, i.e. the same interface gives temperatures and densities (density factors) for multiple materials. |
− | * If the interface is not updated, | + | *If multiple input materials are linked to the interface using the option, the densities in the interface file must be given as density factors, i.e. relative to the material card density (values between 0 and 1). |
− | + | * If the interface is not updated, the entry is not eligible. | |
− | + | *If the regular mesh-based interface is used and if power is not tallied on the same mesh, the entry is not eligible. | |
=== include (read another input file)<span id="include"></span> === | === include (read another input file)<span id="include"></span> === | ||
Line 1,260: | Line 1,676: | ||
*The include card can be used to simplify the structure of complicated inputs. | *The include card can be used to simplify the structure of complicated inputs. | ||
− | *The input parser starts reading and processing the new file from the point where the input card is placed. Processing of the original file continues after the new file is completed. | + | *The input parser starts reading and processing the new file from the point where the input card is placed. |
+ | **Processing of the original file continues after the new file is completed. | ||
*The included file must contain complete input cards and options, it cannot be used to read the values of another card. | *The included file must contain complete input cards and options, it cannot be used to read the values of another card. | ||
+ | *Nested included file paths must refer to the original base input file or current working directory. | ||
=== lat (regular lattice definition)<span id="lat"></span> === | === lat (regular lattice definition)<span id="lat"></span> === | ||
− | + | '''lat''' ''UNI'' ''TYPE'' [ ... ] | |
− | + | Defines a regular lattice universe. Input values: | |
− | '''lat''' ''UNI | + | |
− | + | ||
− | Defines a | + | |
{| | {| | ||
Line 1,278: | Line 1,693: | ||
| : lattice type | | : lattice type | ||
|- | |- | ||
+ | |} | ||
+ | |||
+ | The remaining input values are case/type-dependent. | ||
+ | |||
+ | <u>Notes:</u> | ||
+ | * For more information, see also Section 3.6 of [http://montecarlo.vtt.fi/download/Serpent_manual.pdf Serpent 1 User Manual]. | ||
+ | |||
+ | The available <u>lattice definitions and types</u> (condensed in five cases) are: | ||
+ | ::{| class="wikitable" style="text-align: left; | ||
+ | ! Case | ||
+ | ! xy-plane description | ||
+ | ! z-direction description | ||
+ | ! Types | ||
+ | |- | ||
+ | | [[#lattice_I|<tt>I</tt>]] | ||
+ | | finite 2D lattice with square, hexagonal or triangular elements | ||
+ | | infinite z-direction | ||
+ | | 1 = square, 2 = X-type hexagonal, 3 = Y-type hexagonal, 14 = X-type triangular | ||
+ | |- | ||
+ | | [[#lattice_II|<tt>II</tt>]] | ||
+ | | infinite 2D lattice with square or hexagonal elements | ||
+ | | infinite z-direction | ||
+ | | 6 = square, 7 = X-type hexagonal, 8 = Y-type hexagonal | ||
+ | |- | ||
+ | | [[#lattice_III|<tt>III</tt>]] | ||
+ | | finite 2D lattice circular cluster array | ||
+ | | infinite z-direction | ||
+ | | 4 = circular cluster array | ||
+ | |- | ||
+ | | [[#lattice_IV|<tt>IV</tt>]] | ||
+ | | infinite xy-plane | ||
+ | | finite 1D lattice with vertical stack | ||
+ | | 9 = vertical stack | ||
+ | |- | ||
+ | | [[#lattice_V|<tt>V</tt>]] | ||
+ | | finite 3D lattice with square or hexagonal elements | ||
+ | | finite 3D lattice | ||
+ | | 11 = cuboid, 12 = X-type hexagonal prism, 13 = Y-type hexagonal prism | ||
+ | |- | ||
+ | |} | ||
+ | |||
+ | The syntax of the available cases is as follows: | ||
+ | |||
+ | <u>Case I</u>:<span id="lattice_I"></span> | ||
+ | finite 2D lattice in xy-plane with square, X- or Y-type hexagonal, or X-type triangular elements, and infinite in z-direction. | ||
+ | |||
+ | '''lat''' ''UNI TYPE X<sub>0</sub> Y<sub>0</sub> N<sub>X</sub> N<sub>Y</sub> PITCH'' ''UNI<sub>1</sub> UNI<sub>2</sub> ...'' | ||
+ | |||
+ | {| | ||
| <tt>''X<sub>0</sub>''</tt> | | <tt>''X<sub>0</sub>''</tt> | ||
− | | : x-coordinate of the lattice origin (origin is in the center of the lattice). | + | | : x-coordinate of the lattice origin (origin is in the center of the lattice) [in cm]. |
|- | |- | ||
| <tt>''Y<sub>0</sub>''</tt> | | <tt>''Y<sub>0</sub>''</tt> | ||
− | | : y-coordinate of the lattice origin (origin is in the center of the lattice). | + | | : y-coordinate of the lattice origin (origin is in the center of the lattice) [in cm]. |
|- | |- | ||
| <tt>''N<sub>X</sub>''</tt> | | <tt>''N<sub>X</sub>''</tt> | ||
Line 1,291: | Line 1,755: | ||
|- | |- | ||
| <tt>''PITCH''</tt> | | <tt>''PITCH''</tt> | ||
− | | : lattice pitch | + | | : lattice pitch [in cm] |
|- | |- | ||
| <tt>''UNI<sub>n</sub>''</tt> | | <tt>''UNI<sub>n</sub>''</tt> | ||
Line 1,297: | Line 1,761: | ||
|} | |} | ||
− | Possible lattice | + | Possible lattice definitions are: |
− | {| class="wikitable" style="text-align: left;" | + | ::{| class="wikitable" style="text-align: left;" |
! Type | ! Type | ||
! Description | ! Description | ||
Line 1,320: | Line 1,784: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | *Number of universes | + | *Number of listed universes universes must be ''N<sub>X</sub> × N<sub>Y</sub>''. |
− | *For square lattices the x coordinate increases from left to right and the y coordinate increases from top to bottom, so the first ''N<sub>X</sub>'' values in the list of universes create the bottommost (minimum y) row from minimum x to maximum x and the last ''N<sub>X</sub>'' values in the list of universes create the topmost (maximum y) values. Example of the indexing is provided in the attached figure. | + | *For square lattices the x-coordinate increases from left to right and the y-coordinate increases from top to bottom, so the first ''N<sub>X</sub>'' values in the list of universes create the bottommost (minimum y) row from minimum x to maximum x and the last ''N<sub>X</sub>'' values in the list of universes create the topmost (maximum y) values. Example of the indexing is provided in the attached figure. |
*The line breaks usually present in the list of universes are only used to help visualizing the universe order for the user. Serpent ignores them when processing the list of universes. | *The line breaks usually present in the list of universes are only used to help visualizing the universe order for the user. Serpent ignores them when processing the list of universes. | ||
*The input of X- and Y-type hexagonal lattices is similar to each other, only the directions of the x- and y-axis change. The axis directions can be checked by using the [[#plot (geometry plot definition)|geometry plotter]]. Examples of the indexing are provided in the attached figures. | *The input of X- and Y-type hexagonal lattices is similar to each other, only the directions of the x- and y-axis change. The axis directions can be checked by using the [[#plot (geometry plot definition)|geometry plotter]]. Examples of the indexing are provided in the attached figures. | ||
− | |||
− | + | <u>Case II</u>:<span id="lattice_II"></span> | |
+ | infinite 2D lattice in xy-plane with infinitely repeating square or X- or Y-type hexagonal element, and infinite in z-direction. | ||
+ | |||
+ | '''lat''' ''UNI TYPE X<sub>0</sub> Y<sub>0</sub> PITCH UNI<sub>1</sub>'' | ||
{| | {| | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| <tt>''X<sub>0</sub>''</tt> | | <tt>''X<sub>0</sub>''</tt> | ||
− | | : x-coordinate of the lattice origin | + | | : x-coordinate of the lattice origin [in cm] |
|- | |- | ||
| <tt>''Y<sub>0</sub>''</tt> | | <tt>''Y<sub>0</sub>''</tt> | ||
− | | : y-coordinate of the lattice origin | + | | : y-coordinate of the lattice origin [in cm] |
|- | |- | ||
| <tt>''PITCH''</tt> | | <tt>''PITCH''</tt> | ||
− | | : lattice pitch | + | | : lattice pitch [in cm] |
|- | |- | ||
| <tt>''UNI<sub>1</sub>''</tt> | | <tt>''UNI<sub>1</sub>''</tt> | ||
Line 1,350: | Line 1,810: | ||
Possible lattice types are: | Possible lattice types are: | ||
− | {| class="wikitable" style="text-align: left;" | + | ::{| class="wikitable" style="text-align: left;" |
! Type | ! Type | ||
! Description | ! Description | ||
Line 1,367: | Line 1,827: | ||
*The order of X- and Y-type hexagonal lattice type numbers is reversed when compared with finite hexagonal lattices. | *The order of X- and Y-type hexagonal lattice type numbers is reversed when compared with finite hexagonal lattices. | ||
− | |||
− | + | <u>Case III</u>:<span id="lattice_III"></span> | |
+ | finite 2Dl circular cluster array lattice in xy-plane and infinite in z-direction. | ||
+ | |||
+ | '''lat''' ''UNI TYPE X<sub>0</sub> Y<sub>0</sub> N<sub>R</sub>'' ''N<sub>S,1</sub> RADIUS<sub>1</sub> THETA<sub>1</sub> UNI<sub>1,1</sub> UNI<sub>2,1</sub> ... N<sub>S,2</sub> RADIUS<sub>2</sub> THETA<sub>2</sub> UNI<sub>1,2</sub> UNI<sub>2,2</sub> ... ...'' | ||
{| | {| | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| <tt>''X<sub>0</sub>''</tt> | | <tt>''X<sub>0</sub>''</tt> | ||
− | | : x-coordinate of the lattice origin | + | | : x-coordinate of the lattice origin [in cm] |
|- | |- | ||
| <tt>''Y<sub>0</sub>''</tt> | | <tt>''Y<sub>0</sub>''</tt> | ||
− | | : y-coordinate of the lattice origin | + | | : y-coordinate of the lattice origin [in cm] |
|- | |- | ||
| <tt>''N<sub>R</sub>''</tt> | | <tt>''N<sub>R</sub>''</tt> | ||
Line 1,388: | Line 1,844: | ||
|- | |- | ||
| <tt>''N<sub>S,R</sub>''</tt> | | <tt>''N<sub>S,R</sub>''</tt> | ||
− | | : number of sectors in | + | | : number of sectors in ''R''-th ring |
|- | |- | ||
| <tt>''RADIUS<sub>R</sub>''</tt> | | <tt>''RADIUS<sub>R</sub>''</tt> | ||
− | | : central radius of | + | | : central radius of ''R''-th ring [in cm] |
|- | |- | ||
| <tt>''THETA<sub>R</sub>''</tt> | | <tt>''THETA<sub>R</sub>''</tt> | ||
− | | : angle of rotation of | + | | : angle of rotation of ''R''-th ring [in degrees] |
|- | |- | ||
| <tt>''UNI<sub>N,R</sub>''</tt> | | <tt>''UNI<sub>N,R</sub>''</tt> | ||
− | | : list of universes filling the sector positions in | + | | : list of universes filling the sector positions in ''R''-th ring |
|} | |} | ||
Possible lattice type is: | Possible lattice type is: | ||
− | {| class="wikitable" style="text-align: left;" | + | ::{| class="wikitable" style="text-align: left;" |
! Type | ! Type | ||
! Description | ! Description | ||
Line 1,411: | Line 1,867: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
*The circular cluster array can be used to define fuel assemblies used for example in AGR, CANDU, MAGNOX and RBMK reactors. It can also be used to define fuel rod layout used for example in TRIGA reactors. | *The circular cluster array can be used to define fuel assemblies used for example in AGR, CANDU, MAGNOX and RBMK reactors. It can also be used to define fuel rod layout used for example in TRIGA reactors. | ||
+ | |||
+ | |||
+ | <u>Case IV</u>:<span id="lattice_IV"></span> | ||
+ | infinite lattice in xy-plane, and finite 1D vertical stack in z-direction | ||
'''lat''' ''UNI TYPE X<sub>0</sub> Y<sub>0</sub> N<sub>L</sub> Z<sub>1</sub> UNI<sub>1</sub> Z<sub>2</sub> UNI<sub>2</sub> ...'' | '''lat''' ''UNI TYPE X<sub>0</sub> Y<sub>0</sub> N<sub>L</sub> Z<sub>1</sub> UNI<sub>1</sub> Z<sub>2</sub> UNI<sub>2</sub> ...'' | ||
− | |||
− | |||
{| | {| | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| <tt>''X<sub>0</sub>''</tt> | | <tt>''X<sub>0</sub>''</tt> | ||
− | | : x-coordinate of the lattice origin | + | | : x-coordinate of the lattice origin [in cm] |
|- | |- | ||
| <tt>''Y<sub>0</sub>''</tt> | | <tt>''Y<sub>0</sub>''</tt> | ||
− | | : y-coordinate of the lattice origin | + | | : y-coordinate of the lattice origin [in cm] |
|- | |- | ||
| <tt>''N<sub>L</sub>''</tt> | | <tt>''N<sub>L</sub>''</tt> | ||
Line 1,433: | Line 1,885: | ||
|- | |- | ||
| <tt>''Z<sub>n</sub>''</tt> | | <tt>''Z<sub>n</sub>''</tt> | ||
− | | : z-coordinate of the | + | | : z-coordinate of the ''n''-th lattice element (lower boundary of the axial layer) [in cm] |
|- | |- | ||
| <tt>''UNI<sub>n</sub>''</tt> | | <tt>''UNI<sub>n</sub>''</tt> | ||
− | | : universe name filling the | + | | : universe name filling the ''n''-th lattice position |
|} | |} | ||
− | Possible lattice | + | Possible lattice types are: |
− | {| class="wikitable" style="text-align: left;" | + | ::{| class="wikitable" style="text-align: left;" |
! Type | ! Type | ||
! Description | ! Description | ||
Line 1,453: | Line 1,905: | ||
*The top layer fills the entire space above the highest z-coordinate. | *The top layer fills the entire space above the highest z-coordinate. | ||
*The number of ''Z<sub>n</sub>-UNI<sub>n</sub>'' pairs must be ''N<sub>L</sub>''. | *The number of ''Z<sub>n</sub>-UNI<sub>n</sub>'' pairs must be ''N<sub>L</sub>''. | ||
+ | |||
+ | |||
+ | <u>Case V</u>:<span id="lattice_V"></span> | ||
+ | finite 3D lattice in xyz-space with cuboidal or X- or Y-type hexagonal prism elements | ||
'''lat''' ''UNI TYPE X<sub>0</sub> Y<sub>0</sub> Z<sub>0</sub> N<sub>X</sub> N<sub>Y</sub> N<sub>Z</sub> PITCH<sub>X</sub> PITCH<sub>Y</sub> PITCH<sub>Z</sub> UNI<sub>1</sub> UNI<sub>2</sub> ...'' | '''lat''' ''UNI TYPE X<sub>0</sub> Y<sub>0</sub> Z<sub>0</sub> N<sub>X</sub> N<sub>Y</sub> N<sub>Z</sub> PITCH<sub>X</sub> PITCH<sub>Y</sub> PITCH<sub>Z</sub> UNI<sub>1</sub> UNI<sub>2</sub> ...'' | ||
− | |||
− | |||
{| | {| | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| <tt>''X<sub>0</sub>''</tt> | | <tt>''X<sub>0</sub>''</tt> | ||
− | | : x-coordinate of the lattice origin | + | | : x-coordinate of the lattice origin [in cm] |
|- | |- | ||
| <tt>''Y<sub>0</sub>''</tt> | | <tt>''Y<sub>0</sub>''</tt> | ||
− | | : y-coordinate of the lattice origin | + | | : y-coordinate of the lattice origin [in cm] |
|- | |- | ||
| <tt>''Z<sub>0</sub>''</tt> | | <tt>''Z<sub>0</sub>''</tt> | ||
− | | : z-coordinate of the lattice origin | + | | : z-coordinate of the lattice origin [in cm] |
|- | |- | ||
| <tt>''N<sub>X</sub>''</tt> | | <tt>''N<sub>X</sub>''</tt> | ||
Line 1,484: | Line 1,932: | ||
|- | |- | ||
| <tt>''PITCH<sub>X</sub>''</tt> | | <tt>''PITCH<sub>X</sub>''</tt> | ||
− | | : lattice pitch in x-direction | + | | : lattice pitch in x-direction [in cm] |
|- | |- | ||
| <tt>''PITCH<sub>Y</sub>''</tt> | | <tt>''PITCH<sub>Y</sub>''</tt> | ||
− | | : lattice pitch in y-direction | + | | : lattice pitch in y-direction [in cm] |
|- | |- | ||
| <tt>''PITCH<sub>Z</sub>''</tt> | | <tt>''PITCH<sub>Z</sub>''</tt> | ||
− | | : lattice pitch in z-direction | + | | : lattice pitch in z-direction [in cm] |
|- | |- | ||
| <tt>''UNI<sub>n</sub>''</tt> | | <tt>''UNI<sub>n</sub>''</tt> | ||
Line 1,497: | Line 1,945: | ||
Possible lattice types are: | Possible lattice types are: | ||
− | {| class="wikitable" style="text-align: left;" | + | ::{| class="wikitable" style="text-align: left;" |
! Type | ! Type | ||
! Description | ! Description | ||
Line 1,515: | Line 1,963: | ||
*For hexagonal prism lattices the x- and y-direction pitches must be equal. | *For hexagonal prism lattices the x- and y-direction pitches must be equal. | ||
*The universe indexing is the similar as with lattice types 1-3. The lowermost z-level is given first, and the uppermost z-level is given last. | *The universe indexing is the similar as with lattice types 1-3. The lowermost z-level is given first, and the uppermost z-level is given last. | ||
− | |||
− | |||
− | |||
− | |||
=== mat (material definition)<span id="mat"></span> === | === mat (material definition)<span id="mat"></span> === | ||
Line 1,537: | Line 1,981: | ||
[ ''...'' ] | [ ''...'' ] | ||
− | + | Material definition. The mandatory parameters are: | |
{| | {| | ||
| <tt>''NAME''</tt> | | <tt>''NAME''</tt> | ||
− | | : | + | | : name of the material |
|- | |- | ||
| <tt>''DENS''</tt> | | <tt>''DENS''</tt> | ||
− | | : | + | | : density of the material (positive value = atomic density [in b<sup>-1</sup>cm<sup>-1</sup>], negative value = mass density [in g/cm<sup>3</sup>]) |
|- | |- | ||
| <tt>''NUC<sub>n</sub>''</tt> | | <tt>''NUC<sub>n</sub>''</tt> | ||
− | | : Identifier of ''n''th nuclide in composition | + | | : Identifier of ''n''-th nuclide in composition |
|- | |- | ||
| <tt>''FRAC<sub>n</sub>''</tt> | | <tt>''FRAC<sub>n</sub>''</tt> | ||
− | | : | + | | : fraction of ''n''-th nuclide in composition (positive value = atomic fractions/density, negative values = mass fractions/density) |
|- | |- | ||
|} | |} | ||
− | + | The remaining parameters are defined by separate key words followed by the input values, being optional. | |
− | '''tmp''': <span id="mat_tmp"></span> | + | <u>Notes:</u> |
+ | *There is a special entry for the <tt>''DENS''</tt> parameter: | ||
+ | ** "<tt>sum</tt>": to calculate the density from given nuclide fractions | ||
+ | *The nuclide identifier for nuclides with associated cross-sections corresponds to ZZAAA.ID and, for nuclides without associated cross-sections, e.g., decay nuclides, to ZZAAAI. | ||
+ | **The identifiers include ''Z'', the atomic number; ''A'', the mass number of the nuclide; ''I'', the isomeric state (0 = ground state, 1 = metastable state); and ''ID'', the library identifier. | ||
+ | *For more information, see the detailed description on [[Definitions, units and constants#Definitions|Definitions]]. | ||
+ | |||
+ | |||
+ | <u>Optional entries:</u> | ||
+ | |||
+ | Material temperature for Doppler-broadening pre-processor (<tt>'''tmp'''</tt>): <span id="mat_tmp"></span> | ||
{| | {| | ||
| <tt>''TEMP''</tt> | | <tt>''TEMP''</tt> | ||
− | | : | + | | : temperature of the material [in K] |
|} | |} | ||
− | '''tms''': <span id=" | + | <u>Notes:</u> |
+ | *It defines the material temperature for [[Doppler-broadening preprocessor routine|Doppler-preprocessor]]. | ||
+ | |||
+ | |||
+ | Material temperature for on-the-fly temperature treatment (<tt>'''tms'''</tt>): <span id="mat_tms"></span> | ||
{| | {| | ||
| <tt>''TEMP''</tt> | | <tt>''TEMP''</tt> | ||
− | | : | + | | : temperature of the material [in K] |
|} | |} | ||
− | '''tft''': <span id="mat_tft"></span> | + | <u>Notes:</u> |
+ | *It defines the material temperature for on-the-fly [[TMS on-the-fly temperature treatment routine|TMS temperature treatment]]. | ||
+ | |||
+ | |||
+ | Material temperature for coupled multi-physics calculations (<tt>'''tft'''</tt>): <span id="mat_tft"></span> | ||
{| | {| | ||
| <tt>''T<sub>MIN</sub>''</tt> | | <tt>''T<sub>MIN</sub>''</tt> | ||
− | | : | + | | : lower limit for material temperature [in K] |
|- | |- | ||
| <tt>''T<sub>MAX</sub>''</tt> | | <tt>''T<sub>MAX</sub>''</tt> | ||
− | | : | + | | : upper limit for material temperature [in K] |
|} | |} | ||
− | '''rgb''': <span id="mat_rgb"></span> | + | <u>Notes:</u> |
+ | *It sets the temperature limits for material for [[Coupled multi-physics calculations|coupled multi-physics calculations]]. | ||
+ | *It is used to define the minimum and maximum temperature for the TMS-treatment directly from the interface files (see [[#ifc|ifc]] card). | ||
+ | *For more information, see the detailed description on the [[multi-physics interface| Multi-physics interface]]. | ||
+ | |||
+ | |||
+ | Material RGB-color (<tt>'''rgb'''</tt>): <span id="mat_rgb"></span> | ||
{| | {| | ||
| <tt>''R''</tt> | | <tt>''R''</tt> | ||
− | | : | + | | : value for the red channel (between 0 and 255) |
|- | |- | ||
| <tt>''G''</tt> | | <tt>''G''</tt> | ||
− | | : | + | | : value for the green channel (between 0 and 255) |
|- | |- | ||
| <tt>''B''</tt> | | <tt>''B''</tt> | ||
− | | : | + | | : value for the blue channel (between 0 and 255) |
|} | |} | ||
− | '''vol''': <span id="mat_vol"></span> | + | <u>Notes:</u> |
+ | *It assigns a dedicated RGB-color to the material for the material representation in [[#plot|geometry plots]]. | ||
+ | *If the entry is not provided, the material color is sampled randomly. | ||
+ | |||
+ | |||
+ | Material volume (<tt>'''vol'''</tt>): <span id="mat_vol"></span> | ||
{| | {| | ||
| <tt>''VOL''</tt> | | <tt>''VOL''</tt> | ||
− | | : | + | | : volume of the material [in cm<sup>3</sup>] (3D geometry) or cross-sectional area [in cm<sup>2</sup>] (2D geometry) |
|} | |} | ||
− | '''mass''': <span id="mat_mass"></span> | + | <u>Notes:</u> |
+ | *It defines the material volume. | ||
+ | *Alternatives ways to provide the material volume includes: | ||
+ | ** [[#set mvol|set mvol]] option, used to define the material volumes manually | ||
+ | ** [[#set mcvol|set mcvol]] option, used to define the material volumes automatically using the Monte Carlo checker routine at runtime. | ||
+ | ** [[Installing and running Serpent#Monte Carlo volume calculation routine|<tt>''-checkvolumes''</tt>]] command line option, used to evaluate the material volumes in an independent run. | ||
+ | *For more information, see the detailed description on [[defining material volumes|material volumes definition]]. | ||
+ | |||
+ | |||
+ | Material mass (<tt>'''mass'''</tt>): <span id="mat_mass"></span> | ||
{| | {| | ||
| <tt>''MASS''</tt> | | <tt>''MASS''</tt> | ||
− | | : | + | | : mass of the material [in g] |
|} | |} | ||
− | '''burn''': <span id="mat_burn"></span> | + | <u>Notes:</u> |
+ | *The material mass can be provided as an alternative to the material volume. | ||
+ | |||
+ | |||
+ | Material depletion flag (<tt>'''burn'''</tt>): <span id="mat_burn"></span> | ||
{| | {| | ||
| <tt>''N<sub>R</sub>''</tt> | | <tt>''N<sub>R</sub>''</tt> | ||
− | | : | + | | : option to flag the material as burnable (1/yes) or non-burnable (0/no). The default option is "<tt>non-burnable</tt>" |
+ | |- | ||
|} | |} | ||
− | '''fix''': <span id="mat_fix"></span> | + | <u>Notes:</u> |
+ | *In order to deplete the material and include it in the burnup calculation, the flag must be set to "<tt>1</tt>" | ||
+ | *The depletion zone division should be done using the [[#div|div]] card. However, | ||
+ | ** if a material is defined within a pin-structure, Serpent, by default if no [[#div|div]] card is associated to the material, sub-divides the material in a pin-type level. | ||
+ | ** in Serpent 1, the "flag" is interpreted as the number of annular regions (not recommended) | ||
+ | |||
+ | |||
+ | Material library information for nuclides without cross section data (<tt>'''fix'''</tt>): <span id="mat_fix"></span> | ||
{| | {| | ||
| <tt>''LIB''</tt> | | <tt>''LIB''</tt> | ||
− | | : | + | | : library ID (e.g. "09c") for nuclides without cross section data. |
|- | |- | ||
| <tt>''TEMP''</tt> | | <tt>''TEMP''</tt> | ||
− | | : | + | | : temperature for nuclides without cross section data [in K] |
|} | |} | ||
− | '''moder''': <span id="mat_moder"></span> | + | <u>Notes:</u> |
+ | *It defines the library properties: identifier and temperature for the nuclides without cross section data, e.g. decay nuclides, within the material composition. | ||
+ | |||
+ | |||
+ | Material associated thermal-scattering data (<tt>'''moder'''</tt>): <span id="mat_moder"></span> | ||
{| | {| | ||
| <tt>''THNAME''</tt> | | <tt>''THNAME''</tt> | ||
− | | : | + | | : name of the [[#therm_and_thermstoch_.28thermal_scattering.29|thermal scattering data library]] |
|- | |- | ||
| <tt>''ZA''</tt> | | <tt>''ZA''</tt> | ||
− | | : | + | | : nuclide ZA of the thermal scatterer (e.g. 1001 for H-1). |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | * | + | *It links the thermal-scattering data library for a given nuclide within the material composition. |
− | * | + | *The thermal-scattering data library and the associated temperature treatment is defined by the [[#therm_and_thermstoch_.28thermal_scattering.29|therm]] card. |
− | * | + | *A single material can include multiple "<tt>moder</tt>" entries to define thermal-scattering libraries form multiple nuclides, such as H-H20 and D-D20 in semi-heavy water. |
=== mesh (mesh plot definition)<span id="mesh"></span> === | === mesh (mesh plot definition)<span id="mesh"></span> === | ||
Line 1,654: | Line 2,152: | ||
|- | |- | ||
| <tt>''XPIX''</tt> | | <tt>''XPIX''</tt> | ||
− | | : horizontal image size in pixels | + | | : horizontal image size [in pixels] |
|- | |- | ||
| <tt>''YPIX''</tt> | | <tt>''YPIX''</tt> | ||
− | | : vertical image size in pixels | + | | : vertical image size [in pixels] |
|- | |- | ||
| <tt>''SYM''</tt> | | <tt>''SYM''</tt> | ||
Line 1,663: | Line 2,161: | ||
|- | |- | ||
| <tt>''MIN<sub>n</sub>'' ''MAX<sub>n</sub>''</tt> | | <tt>''MIN<sub>n</sub>'' ''MAX<sub>n</sub>''</tt> | ||
− | | : boundaries of the plotted region | + | | : boundaries of the plotted region [in cm] |
|- | |- | ||
| <tt>''CMAP''</tt> | | <tt>''CMAP''</tt> | ||
Line 1,681: | Line 2,179: | ||
*Some special detector types, such as pulse-height detectors and analog photon heating detectors cannot be associated with mesh plots. | *Some special detector types, such as pulse-height detectors and analog photon heating detectors cannot be associated with mesh plots. | ||
*The mesh plot always produces results that are integrated over space. If no boundaries are provided, the integration is carried over the entire geometry. | *The mesh plot always produces results that are integrated over space. If no boundaries are provided, the integration is carried over the entire geometry. | ||
− | *Setting the orientation parameter of a detector mesh plot to 4 produces a plot in cylindrical coordinates. Instead of Cartesian boundaries the entered values are then the radius | + | *Setting the orientation parameter of a detector mesh plot to 4 produces a plot in cylindrical coordinates. Instead of Cartesian boundaries the entered values are then the radius and axial coordinate. |
*The symmetry option was used in Serpent 1. The parameter must be provided for Serpent 2 as well, even though it is not used. The value can be set to zero. | *The symmetry option was used in Serpent 1. The parameter must be provided for Serpent 2 as well, even though it is not used. The value can be set to zero. | ||
*Mesh plot produced by the nth mesh-card is written in file <tt>[input]_mesh[n].png</tt>. | *Mesh plot produced by the nth mesh-card is written in file <tt>[input]_mesh[n].png</tt>. | ||
Line 1,699: | Line 2,197: | ||
|- | |- | ||
| <tt>''NUC<sub>n</sub>''</tt> | | <tt>''NUC<sub>n</sub>''</tt> | ||
− | | : identifier of <tt>''n''</tt>th nuclide in composition | + | | : identifier of <tt>''n''</tt>-th nuclide in composition |
|- | |- | ||
| <tt>''λ''<sub>n</sub></tt> | | <tt>''λ''<sub>n</sub></tt> | ||
− | | : reprocessing constant of <tt>''n''</tt>th nuclide in composition | + | | : reprocessing constant of <tt>''n''</tt>-th nuclide in composition [in s<sup>-1</sup>] |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | + | * The nuclide ID should follow the [[Definitions, units and constants#definitions|ZAI]] or ISO format (e.g., 922350 or U-235). | |
− | * The nuclide ID | + | * There is a special entry for the nuclide ID: |
− | + | ** "<tt>all</tt>": in which case all nuclides are included with the same reprocessing fraction ''λ''. | |
=== mix (mixture definition)<span id="mix"></span> === | === mix (mixture definition)<span id="mix"></span> === | ||
− | '''mix''' ''NAME'' [ '''rgb''' ''R G B'' ] | + | '''mix''' ''NAME'' [ [[#mix_rgb|'''rgb''']] ''R G B'' ] |
− | [ '''vol''' ''VOL'' ] | + | [ [[#mix_vol|'''vol''']] ''VOL'' ] |
− | [ '''mass''' ''MASS'' ] | + | [ [[#mix_mass|'''mass''']] ''MASS'' ] |
''MAT<sub>1</sub>'' ''F<sub>1</sub>'' | ''MAT<sub>1</sub>'' ''F<sub>1</sub>'' | ||
''MAT<sub>2</sub>'' ''F<sub>2</sub>'' | ''MAT<sub>2</sub>'' ''F<sub>2</sub>'' | ||
... | ... | ||
− | Defines a mixture of two or several materials. | + | Defines a mixture of two or several materials. Mandatory input values: |
− | + | ||
− | + | ||
{| | {| | ||
Line 1,727: | Line 2,223: | ||
|- | |- | ||
| <tt>''F<sub>n</sub>''</tt> | | <tt>''F<sub>n</sub>''</tt> | ||
− | | : material fraction (positive | + | | : material fraction (positive value = volume fraction, negative value = mass fraction) |
|- | |- | ||
|} | |} | ||
− | + | The remaining parameters are defined by separate key words followed by the input values, being optional. | |
− | '''rgb''': <span id=" | + | <u>Notes:</u> |
+ | |||
+ | *Mixtures can be used to define complicated material definitions consisting of two or more physical materials mixed homogeneously. | ||
+ | *The mixtures are automatically decomposed into standard materials before running the transport simulation. | ||
+ | **Alternatively, the decomposed material compositions can be written into file using the [[Installing and running Serpent#Running Serpent|<tt>''-mix''</tt>]] command line option. | ||
+ | *Inherited properties/cards: | ||
+ | **Nuclide specific thermal scattering data (see '''moder''' entry in the [[#mat_moder|mat]] card) is automatically brought from component materials to the mixture. | ||
+ | **Other input option such as [[#set_trc|set trc]], [[#set_iter_nuc|set iter nuc]], [[Sensitivity_calculations#Choosing_materials_to_perturb|sens pert matlist]] are not automatically inherited by the mixture from the components. | ||
+ | **If they are to be applied to the mixture, they should be directly defined using the mixture material name (opposed to component material names) . | ||
+ | *Burnable mixtures are not supported. | ||
+ | |||
+ | |||
+ | <u>Optional entries:</u> | ||
+ | |||
+ | Mixture RGB-color (<tt>'''rgb'''</tt>): <span id="mix_rgb"></span> | ||
{| | {| | ||
| <tt>''R''</tt> | | <tt>''R''</tt> | ||
− | | : | + | | : value for the red channel (between 0 and 255) |
|- | |- | ||
| <tt>''G''</tt> | | <tt>''G''</tt> | ||
− | | : | + | | : value for the green channel (between 0 and 255) |
|- | |- | ||
| <tt>''B''</tt> | | <tt>''B''</tt> | ||
− | | : | + | | : value for the blue channel (between 0 and 255) |
|} | |} | ||
− | '''vol''': <span id=" | + | <u>Notes:</u> |
+ | *RGB color coding for material representation in [[#plot|geometry plots]]. | ||
+ | |||
+ | |||
+ | Mixture volume (<tt>'''vol'''</tt>): <span id="mix_vol"></span> | ||
{| | {| | ||
| <tt>''VOL''</tt> | | <tt>''VOL''</tt> | ||
− | | : | + | | : volume of the material [in cm<sup>3</sup>] (3D geometry) or cross-sectional area [in cm<sup>2</sup>] (2D geometry) |
|} | |} | ||
− | '''mass''': <span id=" | + | |
+ | Mixture mass (<tt>'''mass'''</tt>): <span id="mix_mass"></span> | ||
{| | {| | ||
| <tt>''MASS''</tt> | | <tt>''MASS''</tt> | ||
− | | : | + | | : mass of the material [in g] |
|} | |} | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
=== nest (nested universe definition)<span id="nest"></span> === | === nest (nested universe definition)<span id="nest"></span> === | ||
− | '''nest''' '' | + | '''nest''' ''UNI<sub>0</sub>'' ''TYPE'' |
[ ''MAT<sub>1</sub>'' ''R<sub>1</sub>'' ] | [ ''MAT<sub>1</sub>'' ''R<sub>1</sub>'' ] | ||
[ ''MAT<sub>2</sub>'' ''R<sub>2</sub>'' ] | [ ''MAT<sub>2</sub>'' ''R<sub>2</sub>'' ] | ||
Line 1,776: | Line 2,283: | ||
[ ''MAT<sub>N</sub>'' ] | [ ''MAT<sub>N</sub>'' ] | ||
− | '''nest''' '' | + | '''nest''' ''UNI<sub>0</sub>'' |
[ ''MAT<sub>1</sub>'' ''TYPE<sub>1</sub>'' ''PARAM<sub>11</sub> PARAM<sub>12</sub>'' ... ] | [ ''MAT<sub>1</sub>'' ''TYPE<sub>1</sub>'' ''PARAM<sub>11</sub> PARAM<sub>12</sub>'' ... ] | ||
[ ''MAT<sub>2</sub>'' ''TYPE<sub>2</sub>'' ''PARAM<sub>21</sub> PARAM<sub>22</sub>'' ... ] | [ ''MAT<sub>2</sub>'' ''TYPE<sub>2</sub>'' ''PARAM<sub>21</sub> PARAM<sub>22</sub>'' ... ] | ||
Line 1,785: | Line 2,292: | ||
{| | {| | ||
− | | <tt>'' | + | | <tt>''UNI<sub>0</sub>''</tt> |
| : universe name | | : universe name | ||
|- | |- | ||
Line 1,795: | Line 2,302: | ||
|- | |- | ||
| <tt>''R<sub>1</sub> ... R<sub>N-1</sub>''</tt> | | <tt>''R<sub>1</sub> ... R<sub>N-1</sub>''</tt> | ||
− | | : outer radii | + | | : outer radii [in cm] |
|- | |- | ||
| <tt>''TYPE<sub>1</sub> ... TYPE<sub>N-1</sub>''</tt> | | <tt>''TYPE<sub>1</sub> ... TYPE<sub>N-1</sub>''</tt> | ||
| : nested surface type (different surfaces for each region) | | : nested surface type (different surfaces for each region) | ||
|- | |- | ||
− | | <tt>''PARAM<sub>nm</sub> ... </tt> | + | | <tt>''PARAM<sub>nm</sub>'' ... </tt> |
| : surface parameters | | : surface parameters | ||
|} | |} | ||
Line 1,806: | Line 2,313: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | *The nest card defines an entire universe consisting of nested material regions. The boundaries are defined by surfaces nested inside each other. The outermost region is infinite. | + | *The nest card defines an entire universe consisting of nested material regions. |
− | * | + | **The boundaries are defined by surfaces nested inside each other. |
− | *The first format allows defining nests in which all surfaces are of same type and centred at the origin. Only surfaces that are characterized by a single outer radius are accepted ([[Surface_types#Second-order_quadratic_surfaces|cylinders, spheres]] and some [[Surface_types#Regular_prisms|regular prisms]]). The [[#pin (pin geometry definition)|pin]] and [[#particle (particle geometry definition)|particle]] definitions are short-hand notations of the nest card. | + | **The outermost region is infinite. |
+ | *Special <tt>''MAT<sub>i</sub>''</tt> entry: the material entries can be replaced by "<tt>fill ''UNI<sub>i</sub>''</tt>", in which case the region is filled by another universe, <tt>''UNI<sub>i</sub>''</tt>. | ||
+ | *The first format allows defining nests in which all surfaces are of same type and centred at the origin. | ||
+ | **Only surfaces that are characterized by a single outer radius are accepted ([[Surface_types#Second-order_quadratic_surfaces|cylinders, spheres]] and some [[Surface_types#Regular_prisms|regular prisms]]). | ||
+ | **The [[#pin (pin geometry definition)|pin]] and [[#particle (particle geometry definition)|particle]] definitions are short-hand notations of the nest card. | ||
*The second format allows mixing different surface types. In this case all surface parameters need to be provided after the surface type. | *The second format allows mixing different surface types. In this case all surface parameters need to be provided after the surface type. | ||
=== particle (particle geometry definition)<span id="particle"></span> === | === particle (particle geometry definition)<span id="particle"></span> === | ||
− | '''particle''' '' | + | '''particle''' ''UNI<sub>0</sub>'' |
[ ''MAT<sub>1</sub>'' ''R<sub>1</sub>'' ] | [ ''MAT<sub>1</sub>'' ''R<sub>1</sub>'' ] | ||
[ ''MAT<sub>2</sub>'' ''R<sub>2</sub>'' ] | [ ''MAT<sub>2</sub>'' ''R<sub>2</sub>'' ] | ||
Line 1,821: | Line 2,332: | ||
{| | {| | ||
− | | <tt>'' | + | | <tt>''UNI<sub>0</sub>''</tt> |
| : universe name | | : universe name | ||
|- | |- | ||
Line 1,828: | Line 2,339: | ||
|- | |- | ||
| <tt>''R<sub>1</sub> ... R<sub>N-1</sub>''</tt> | | <tt>''R<sub>1</sub> ... R<sub>N-1</sub>''</tt> | ||
− | | : outer radii | + | | : outer radii [in cm] |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | *The particle card defines an entire universe consisting of nested spherical shells. The boundaries are defined by sphere surfaces. The outermost region is radially infinite. | + | *The particle card defines an entire universe consisting of nested spherical shells. |
− | * | + | **The boundaries are defined by sphere surfaces. |
+ | **The outermost region is radially infinite. | ||
+ | *Special <tt>''MAT<sub>i</sub>''</tt> entry: the material entries can be replaced by "<tt>fill ''UNI<sub>i</sub>''</tt>", in which case the region is filled by another universe, <tt>''UNI<sub>i</sub>''</tt>. | ||
*Most typically used for defining TRISO fuel particles. | *Most typically used for defining TRISO fuel particles. | ||
*The particle card is special case of a [[#nest (nested universe definition)|nested universe type]]. | *The particle card is special case of a [[#nest (nested universe definition)|nested universe type]]. | ||
*See also description of [[#pbed (explicit stochastic geometry)|explicit stochastic geometry type]]. | *See also description of [[#pbed (explicit stochastic geometry)|explicit stochastic geometry type]]. | ||
− | === pbed (explicit stochastic (pebble bed) geometry) === | + | === pbed (explicit stochastic (pebble bed) geometry definition) === |
− | '''pbed''' '' | + | '''pbed''' ''UNI<sub>0</sub>'' ''UNI<sub>bg</sub>'' ''FILE'' [ ''OPT'' ] |
Defines a stochastic particle / pebble-bed geometry. Input values: | Defines a stochastic particle / pebble-bed geometry. Input values: | ||
{| | {| | ||
− | | <tt>'' | + | | <tt>''UNI<sub>0</sub>''</tt> |
| : universe name for the dispersed medium | | : universe name for the dispersed medium | ||
|- | |- | ||
− | | <tt>'' | + | | <tt>''UNI<sub>bg</sub>''</tt> |
| : background universe, i.e. universe filling the space between particles / pebbles | | : background universe, i.e. universe filling the space between particles / pebbles | ||
|- | |- | ||
Line 1,855: | Line 2,368: | ||
|- | |- | ||
| <tt>''OPT''</tt> | | <tt>''OPT''</tt> | ||
− | |: additional options | + | |: additional options |
|} | |} | ||
− | |||
− | + | The <u>syntax of the file</u> containing the particle/pebble data is: | |
− | ''X<sub>2</sub>'' ''Y<sub>2</sub>'' ''Z<sub>2</sub>'' ''R<sub>2</sub>'' '' | + | ::{| class="toccolours" style="text-align: left;" |
+ | | ''X<sub>1</sub>'' ''Y<sub>1</sub>'' ''Z<sub>1</sub>'' ''R<sub>1</sub>'' ''UNI<sub>1</sub>'' | ||
+ | |- | ||
+ | | ''X<sub>2</sub>'' ''Y<sub>2</sub>'' ''Z<sub>2</sub>'' ''R<sub>2</sub>'' ''UNI<sub>2</sub>'' | ||
+ | |- | ||
+ | | ... | ||
+ | |- | ||
+ | |} | ||
− | + | where: | |
− | + | ||
− | + | ||
{| | {| | ||
|<tt>''X<sub>n</sub>'', ''Y<sub>n</sub>'', ''Z<sub>n</sub>''</tt> | |<tt>''X<sub>n</sub>'', ''Y<sub>n</sub>'', ''Z<sub>n</sub>''</tt> | ||
− | |: are the coordinates | + | |: are the coordinates [in cm] |
|- | |- | ||
|<tt>''R<sub>n</sub>''</tt> | |<tt>''R<sub>n</sub>''</tt> | ||
− | |: is the radius | + | |: is the radius [in cm] |
|- | |- | ||
− | |<tt>'' | + | |<tt>''UNI<sub>n</sub>''</tt> |
|: is the universe | |: is the universe | ||
+ | |} | ||
+ | |||
+ | The supported <u>additional options</u> are: | ||
+ | ::{| class="wikitable" style="text-align: left;" | ||
+ | ! Option | ||
+ | ! Description | ||
+ | |- | ||
+ | | <tt>pow</tt> | ||
+ | | power distribution | ||
+ | |- | ||
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | *Creates a universe (<tt>'' | + | *Creates a universe (<tt>''UNI<sub>0</sub>''</tt>), which is filled with spherical sub-universes for which the coordinates are read from a separate file. |
− | *The coordinates can be defined manually, or using the [[Installing_and_running_Serpent# | + | *The coordinates can be defined manually, or using the [[Installing_and_running_Serpent#Running Serpent|<tt>''-disperse''</tt>]] command line option which launches the particle disperser routine. |
*Can be used for modelling stochastic particle / pebble-bed geometries in multiple levels. | *Can be used for modelling stochastic particle / pebble-bed geometries in multiple levels. | ||
− | *If the power distribution option is set, the pebble/particle-wise distribution is written in file <tt>[ | + | *If the "<tt>pow</tt>" (power distribution) option is set, the pebble/particle-wise distribution is written in file <tt>[''FILE'']_pow[bu].m</tt>, where "<tt>bu</tt>" is the burnup step, from version 2.2.1 and on (in previous versions, <tt>[''FILE''].out</tt>). |
*See also [[Collection_of_example_input_files#Simple_burnup_examples|HTGR geometry examples]]. | *See also [[Collection_of_example_input_files#Simple_burnup_examples|HTGR geometry examples]]. | ||
Line 1,896: | Line 2,423: | ||
|- | |- | ||
|<tt>''TYPE''</tt> | |<tt>''TYPE''</tt> | ||
− | |: pulse-height function type | + | |: pulse-height function type |
|} | |} | ||
− | The | + | The remaining input values are type-dependent. |
− | '''phb''' ''NAME'' '''1''' ''INTT'' ''E<sub>max,1</sub>'' ''R<sub>1</sub>'' ''E<sub>max,2</sub>'' ''R<sub>2</sub>'' ... | + | The <u>pulse-height funtion types</u> are: |
+ | ::{| class="wikitable" style="text-align: left;" | ||
+ | ! Type | ||
+ | ! Description | ||
+ | |- | ||
+ | | [[#phb_1|<tt>1</tt>]] | ||
+ | | energy-resolution interpolation | ||
+ | |- | ||
+ | | [[#phb_2|<tt>2</tt>]] | ||
+ | | energy-FWHM interpolation | ||
+ | |- | ||
+ | | [[#phb_3|<tt>3</tt>]] | ||
+ | | energy-resolution fitting | ||
+ | |- | ||
+ | | [[#phb_4|<tt>4</tt>]] | ||
+ | | energy-FWHM fitting | ||
+ | |- | ||
+ | |} | ||
+ | |||
+ | The syntax for the available types is as follows: | ||
+ | |||
+ | '''phb''' ''NAME'' '''1''' ''INTT'' ''E<sub>max,1</sub>'' ''R<sub>1</sub>'' ''E<sub>max,2</sub>'' ''R<sub>2</sub>'' ... <span id="phb_1"></span> | ||
− | |||
{| | {| | ||
|<tt>''INTT''</tt> | |<tt>''INTT''</tt> | ||
Line 1,909: | Line 2,456: | ||
|- | |- | ||
|<tt>''E<sub>max,i</sub>, R<sub>i</sub>''</tt> | |<tt>''E<sub>max,i</sub>, R<sub>i</sub>''</tt> | ||
− | |: are the maximum energy-resolution tabulated pairs | + | |: are the maximum energy-resolution tabulated pairs [in MeV (energy)] |
|} | |} | ||
Line 1,917: | Line 2,464: | ||
* Energies should be given in ascending order. | * Energies should be given in ascending order. | ||
− | '''phb''' ''NAME'' '''2''' ''INTT'' ''E<sub>max,1</sub>'' ''FWHM<sub>1</sub>'' ''E<sub>max,2</sub>'' ''FWHM<sub>2</sub>'' ... | + | '''phb''' ''NAME'' '''2''' ''INTT'' ''E<sub>max,1</sub>'' ''FWHM<sub>1</sub>'' ''E<sub>max,2</sub>'' ''FWHM<sub>2</sub>'' ... <span id="phb_2"></span> |
− | |||
{| | {| | ||
|<tt>''INTT''</tt> | |<tt>''INTT''</tt> | ||
Line 1,925: | Line 2,471: | ||
|- | |- | ||
|<tt>''E<sub>max,i</sub>, FWHM<sub>i</sub>''</tt> | |<tt>''E<sub>max,i</sub>, FWHM<sub>i</sub>''</tt> | ||
− | |: are the maximum energy-full width at half maximum pairs | + | |: are the maximum energy-full width at half maximum pairs [in MeV (energy)] |
|} | |} | ||
Line 1,932: | Line 2,478: | ||
* Energies should be given in ascending order. | * Energies should be given in ascending order. | ||
− | '''phb''' ''NAME'' '''3''' ''a'' ''b'' | + | '''phb''' ''NAME'' '''3''' ''a'' ''b'' <span id="phb_3"></span> |
− | |||
{| | {| | ||
|<tt>''a, b''</tt> | |<tt>''a, b''</tt> | ||
Line 1,940: | Line 2,485: | ||
|} | |} | ||
− | '''phb''' ''NAME'' '''4''' ''a'' ''b'' ''c'' | + | '''phb''' ''NAME'' '''4''' ''a'' ''b'' ''c'' <span id="phb_4"></span> |
− | |||
{| | {| | ||
|<tt>''a, b, c''</tt> | |<tt>''a, b, c''</tt> | ||
Line 1,950: | Line 2,494: | ||
=== pin (pin geometry definition)<span id="pin"></span> === | === pin (pin geometry definition)<span id="pin"></span> === | ||
− | '''pin''' '' | + | '''pin''' ''UNI<sub>0</sub>'' |
[ ''MAT<sub>1</sub>'' ''R<sub>1</sub>'' ] | [ ''MAT<sub>1</sub>'' ''R<sub>1</sub>'' ] | ||
[ ''MAT<sub>2</sub>'' ''R<sub>2</sub>'' ] | [ ''MAT<sub>2</sub>'' ''R<sub>2</sub>'' ] | ||
Line 1,958: | Line 2,502: | ||
{| | {| | ||
− | | <tt>'' | + | | <tt>''UNI<sub>0</sub>''</tt> |
| : universe name | | : universe name | ||
|- | |- | ||
Line 1,965: | Line 2,509: | ||
|- | |- | ||
| <tt>''R<sub>1</sub> ... R<sub>N-1</sub>''</tt> | | <tt>''R<sub>1</sub> ... R<sub>N-1</sub>''</tt> | ||
− | | : outer radii | + | | : outer radii [in cm] |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | *The pin card defines an entire universe consisting of nested annular material regions. The boundaries are defined by axially infinite cylindrical surfaces. The outermost region is radially infinite. | + | *The pin card defines an entire universe consisting of nested annular material regions. |
− | * | + | **The boundaries are defined by axially infinite cylindrical surfaces. |
+ | **The outermost region is radially infinite. | ||
+ | *Special <tt>''MAT<sub>i</sub>''</tt> entry: the material entries can be replaced by "<tt>fill ''UNI<sub>i</sub>''</tt>", in which case the region is filled by another universe, <tt>''UNI<sub>i</sub>''</tt>. | ||
*Most typically used for defining fuel pins, but can also be applied to guide tubes, control rods, etc. | *Most typically used for defining fuel pins, but can also be applied to guide tubes, control rods, etc. | ||
*The pin card is special case of a [[#nest (nested universe definition)|nested universe type]]. | *The pin card is special case of a [[#nest (nested universe definition)|nested universe type]]. | ||
Line 1,988: | Line 2,534: | ||
|- | |- | ||
| <tt>''XPIX''</tt> | | <tt>''XPIX''</tt> | ||
− | | : horizontal image size in pixels | + | | : horizontal image size [in pixels] |
|- | |- | ||
| <tt>''YPIX''</tt> | | <tt>''YPIX''</tt> | ||
− | | : vertical image size in pixels | + | | : vertical image size [in pixels] |
|- | |- | ||
| <tt>''POS''</tt> | | <tt>''POS''</tt> | ||
− | | : position of plot plane | + | | : position of plot plane [in cm] |
|- | |- | ||
| <tt>''MIN<sub>1</sub>''</tt> | | <tt>''MIN<sub>1</sub>''</tt> | ||
− | | : minimum horizontal coordinate of plotted region | + | | : minimum horizontal coordinate of plotted region [in cm] |
|- | |- | ||
| <tt>''MAX<sub>1</sub>''</tt> | | <tt>''MAX<sub>1</sub>''</tt> | ||
− | | : maximum horizontal coordinate of plotted region | + | | : maximum horizontal coordinate of plotted region [in cm] |
|- | |- | ||
| <tt>''MIN<sub>2</sub>''</tt> | | <tt>''MIN<sub>2</sub>''</tt> | ||
− | | : minimum vertical coordinate of plotted region | + | | : minimum vertical coordinate of plotted region [in cm] |
|- | |- | ||
| <tt>''MAX<sub>2</sub>''</tt> | | <tt>''MAX<sub>2</sub>''</tt> | ||
− | | : maximum vertical coordinate of plotted region | + | | : maximum vertical coordinate of plotted region [in cm] |
|- | |- | ||
| <tt>''F<sub>min</sub>''</tt> | | <tt>''F<sub>min</sub>''</tt> | ||
Line 2,015: | Line 2,561: | ||
|- | |- | ||
| <tt>''E''</tt> | | <tt>''E''</tt> | ||
− | | : particle energy for importance map plots | + | | : particle energy for importance map plots [in MeV] |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | *The <tt>''TYPE''</tt> parameter consists of one or two concatenated values ('AB'): | + | *The <tt>''TYPE''</tt> parameter consists of one ('A') or two concatenated values ('AB'): |
− | * | + | **The first value ('A') defines the plot plane (yz-plot = 1, "<tt>x</tt>", xz-plot = 2, "<tt>y</tt>", xy-plot = 3, "<tt>z</tt>"). |
− | * | + | **The second value ('B') defines which boundaries are plotted (0 = no boundaries, 1 = cell boundaries, 2 = material boundaries, 3 = both cell and material boundaries). |
− | * | + | ***If the second value ('B') is not provided, default value 2 = material boundaries is used. |
− | *If both, minimum and maximum importance values are set to "-1", Serpent automatically adjusts them based on the weight-window mesh data, from version 2.2.0 and on. | + | *The relative dimensions of image size (<tt>''XPIX''</tt>, <tt>''YPIX''</tt>) should match that of the plotted region. Otherwise the image gets distorted. |
− | *Each material plotted with different color. The colors are sampled randomly, unless defined using the '''rgb''' entry in the [[#mat (material definition)| | + | *The position parameter <tt>''POS''</tt> defines the location of the plot plane on the axis perpendicular to it (e.g. z-coordinate for xy-type plot). |
− | * | + | *The minimum and maximum coordinates: <tt>''MIN<sub>n</sub>''</tt>, <tt>''MAX<sub>n</sub>''</tt>, define the boundaries of the plotted region (e.g. minimum and maximum x- and y-coordinates for xy-type plot). |
− | + | ** If the coordinates are not provided, the plot is extended to the maximum dimensions of the geometry. | |
− | + | ||
− | + | *The second format allows to plot he importance maps read using the [[#wwin (weight window mesh definition)|wwin card]]: | |
− | *Geometry plotter requires compiling the source code with [[ | + | **They can be plotted on top of the geometry by setting the second value ('B') of the type parameter for: |
− | *[[Installing and running Serpent#Running Serpent| | + | *** Cell importances: 4 (linear color scheme) or 5 (logarithmic color scheme) |
+ | *** Source importances: 6 (linear color scheme) or 7 (logarithmic color scheme) | ||
+ | **The input parameters include the minimum and maximum importance (<tt>''F<sub>min</sub>''</tt>, <tt>''F<sub>max</sub>''</tt>) and the particle energy, <tt>''E''</tt>. | ||
+ | ***If importance maps are provided for both neutrons and photons, they can be plotted by entering positive and negative energy values, respectively. | ||
+ | ***If both, minimum and maximum importance values are set to "-1", Serpent automatically adjusts them based on the weight-window mesh data, from version 2.2.0 and on. | ||
+ | ****If the calculation fails on providing those minimum and maximum values due to the weight-window evaluation, the values are set by default to (1E-200, 1E+200). | ||
+ | **''Note to developers: particle type should be included as an input parameter in importance map plots.'' | ||
+ | |||
+ | *Material colors: | ||
+ | **Each material plotted with different color. | ||
+ | **The colors are sampled randomly, unless defined using the '''rgb''' entry in the material card (see [[#mat (material definition)|mat]]) or mixture card (see [[#mix (mixture definition)|mix]]) | ||
+ | **Special RGB-colors: | ||
+ | |||
+ | ::{|class="wikitable" style="text-align: left;" | ||
+ | ! RGB value | ||
+ | ! Color | ||
+ | ! Description | ||
+ | |- | ||
+ | | (0, 0, 0) | ||
+ | | <span style="color:#000; background:#000">COLOR</span> | ||
+ | | Outside cell or void-material | ||
+ | |- | ||
+ | | (0, 255, 0) | ||
+ | | <span style="color:#00FF00; background:#00FF00">COLOR</span> | ||
+ | | No cell found at coordinates | ||
+ | |- | ||
+ | | (255, 0, 0) | ||
+ | | <span style="color:#FF0000; background:#FF0000">COLOR</span> | ||
+ | | Overlap of multiple cells found at coordinates | ||
+ | |- | ||
+ | | (255, 0, 255) | ||
+ | | <span style="color:#FF00FF; background:#FF00FF">COLOR</span> | ||
+ | | Undefined material density factor at coordinates | ||
+ | |} | ||
+ | |||
+ | *Geometry plotter requires compiling the source code with [[Installing and running Serpent#GD Graphics library|GD Graphics libraries]]. | ||
+ | *Command line options: | ||
+ | **[[Installing and running Serpent#Running Serpent|<tt>''-plot''</tt>]] stops the execution after the geometry plots are produced | ||
+ | **[[Installing and running Serpent#Running Serpent|<tt>''-qp''</tt>]] invokes a quick plot mode, which does not check for overlaps | ||
+ | **[[Installing and running Serpent#Running Serpent|<tt>''-noplot''</tt>]] skips the geometry plots altogether | ||
*See also [[Visualizing the results#Geometry plotter|detailed description]] on geometry plotter. | *See also [[Visualizing the results#Geometry plotter|detailed description]] on geometry plotter. | ||
− | * | + | *The geometry plot produced by the ''n''-th plot-card is written in file <tt>[input]_geom[n].png</tt>. |
− | + | ||
=== rep (reprocessor definition)<span id="rep"></span> === | === rep (reprocessor definition)<span id="rep"></span> === | ||
'''rep''' ''NAME'' | '''rep''' ''NAME'' | ||
− | [ '''rc''' ''SRC'' ''TGT'' ''MFLOW'' ''MODE'' ] | + | [ [[#rep_rc|'''rc''']] ''SRC'' ''TGT'' ''MFLOW'' ''MODE'' ] |
− | [ '''rm''' ''MAT<sub>1</sub>'' ''MAT<sub>2</sub>'' ] | + | [ [[#rep_rm|'''rm''']] ''MAT<sub>1</sub>'' ''MAT<sub>2</sub>'' ] |
− | [ '''ru''' ''UNI<sub>1</sub>'' ''UNI<sub>2</sub>'' ] | + | [ [[#rep_ru|'''ru''']] ''UNI<sub>1</sub>'' ''UNI<sub>2</sub>'' ] |
− | Defines the reprocessing controllers. | + | Defines the reprocessing controllers. The first parameter: |
{| | {| | ||
| <tt>''NAME''</tt> | | <tt>''NAME''</tt> | ||
| : name of the reprocessor. | | : name of the reprocessor. | ||
− | | | + | |} |
+ | |||
+ | The remaining parameters are defined by separate key words followed by the input values. | ||
+ | |||
+ | <u>Notes:</u> | ||
+ | *The reprocessor name identifies the reprocessing regime in the depletion calculation [[#dep|dep card]]. The syntax corresponds to '''dep pro''' ''NAME''. | ||
+ | *Multiple reprocessing controllers/regimes can be defined within the same reprocessor definition. | ||
+ | |||
+ | |||
+ | <u>Reprocessing regime types:</u> | ||
+ | |||
+ | Reprocessing continuos regime (<tt>'''rc'''</tt>):<span id="rep_rc"></span> | ||
+ | {| | ||
| <tt>''SRC''</tt> | | <tt>''SRC''</tt> | ||
| : name of the source material, from which the flow is moved | | : name of the source material, from which the flow is moved | ||
Line 2,060: | Line 2,656: | ||
| <tt>''MODE''</tt> | | <tt>''MODE''</tt> | ||
| : continuous reprocessing mode | | : continuous reprocessing mode | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | + | *The nuclides identifier of those included in both source <tt>''SRC''</tt> and target <tt>''TGT''</tt> materials in reprocessors should follow the same format | |
− | + | **ZA.ID or ISO.ID (for nuclides with cross sections) or ZAI (for nuclides without associated cross sections, and adding the '''fix''' entry to the [[#mat (material definition)|mat card]]). | |
− | *The nuclides identifier of those included in both source <tt>''SRC''</tt> and target <tt>''TGT''</tt> materials in reprocessors should follow the same format | + | **For more information, see the detailed description on [[Definitions, units and constants#definitions|Nuclide IDs]]). |
− | *The | + | *The continuous reprocessing regime works with materials, not universes. Therefore, define the universes associated with those burnable materials as surface-cell type universes. |
− | + | *The continuous reprocessing regime can be used to define the material flow between the source and the target materials. | |
− | *The | + | |
**The material flow is defined using the [[#mflow|mflow card]]. | **The material flow is defined using the [[#mflow|mflow card]]. | ||
**The continuous reprocessing <tt>''MODE''</tt> defines how to incorporate the material flow into the Bateman equations: | **The continuous reprocessing <tt>''MODE''</tt> defines how to incorporate the material flow into the Bateman equations: | ||
Line 2,110: | Line 2,693: | ||
:*<tt>''MODE''</tt> 1 : subtracts ''λN'' from the source material and adds it to the target material when solving the Bateman equations. | :*<tt>''MODE''</tt> 1 : subtracts ''λN'' from the source material and adds it to the target material when solving the Bateman equations. | ||
:*<tt>''MODE''</tt> 2 : subtracts ''λN<sub>n</sub>'' from the source material and adds it to the target material when solving the Bateman equations (compositions updated with each burnup step, ''n''). | :*<tt>''MODE''</tt> 2 : subtracts ''λN<sub>n</sub>'' from the source material and adds it to the target material when solving the Bateman equations (compositions updated with each burnup step, ''n''). | ||
− | |||
− | |||
− | === sample ( | + | |
+ | Reprocessing material regime (<tt>'''rm'''</tt>):<span id="rep_rm"></span> | ||
+ | |||
+ | {| | ||
+ | | <tt>''MAT<sub>1</sub>''</tt> | ||
+ | | : name of the replaced material | ||
+ | |- | ||
+ | | <tt>''MAT<sub>2</sub>''</tt> | ||
+ | | : name of the replacing material | ||
+ | |- | ||
+ | |} | ||
+ | |||
+ | <u>Notes:</u> | ||
+ | *The material reprocessing regime replaces one material with another, ''MAT<sub>1</sub>'' by ''MAT<sub>2</sub>''. | ||
+ | |||
+ | |||
+ | Reprocessing universe regime (<tt>'''ru'''</tt>):<span id="rep_ru"></span> | ||
+ | |||
+ | {| | ||
+ | | <tt>''UNI<sub>1</sub>''</tt> | ||
+ | | : name of the replaced universe | ||
+ | |- | ||
+ | | <tt>''UNI<sub>2</sub>''</tt> | ||
+ | | : name of the replacing universe | ||
+ | |- | ||
+ | |} | ||
+ | |||
+ | <u>Notes:</u> | ||
+ | *The universe reprocessing regime replaces one universe with another, ''UNI<sub>1</sub>'' by ''UNI<sub>2</sub>''. | ||
+ | |||
+ | === sample (temperature / density data sample definition)<span id="sample"></span> === | ||
'''sample''' ''N<sub>X</sub>'' ''X<sub>MIN</sub>'' ''X<sub>MAX</sub>'' ''N<sub>Y</sub>'' ''Y<sub>MIN</sub>'' ''Y<sub>MAX</sub>'' ''N<sub>Z</sub>'' ''Z<sub>MIN</sub>'' ''Z<sub>MAX</sub>'' | '''sample''' ''N<sub>X</sub>'' ''X<sub>MIN</sub>'' ''X<sub>MAX</sub>'' ''N<sub>Y</sub>'' ''Y<sub>MIN</sub>'' ''Y<sub>MAX</sub>'' ''N<sub>Z</sub>'' ''Z<sub>MIN</sub>'' ''Z<sub>MAX</sub>'' | ||
Line 2,123: | Line 2,734: | ||
{| | {| | ||
| <tt>''N<sub>X</sub>''</tt> | | <tt>''N<sub>X</sub>''</tt> | ||
− | | : | + | | : number of values to sample in the x-direction. |
|- | |- | ||
| <tt>''X<sub>MIN</sub>''</tt> | | <tt>''X<sub>MIN</sub>''</tt> | ||
− | | : | + | | : minimum coordinate to sample from in the x-direction [in cm] |
|- | |- | ||
| <tt>''X<sub>MAX</sub>''</tt> | | <tt>''X<sub>MAX</sub>''</tt> | ||
− | | : | + | | : maximum coordinate to sample from in the x-direction [in cm] |
|- | |- | ||
| <tt>''N<sub>Y</sub>''</tt> | | <tt>''N<sub>Y</sub>''</tt> | ||
− | | : | + | | : number of values to sample in the y-direction. |
|- | |- | ||
| <tt>''Y<sub>MIN</sub>''</tt> | | <tt>''Y<sub>MIN</sub>''</tt> | ||
− | | : | + | | : minimum coordinate to sample from in the y-direction [in cm] |
|- | |- | ||
| <tt>''Y<sub>MAX</sub>''</tt> | | <tt>''Y<sub>MAX</sub>''</tt> | ||
− | | : | + | | : maximum coordinate to sample from in the y-direction [in cm] |
|- | |- | ||
| <tt>''N<sub>Z</sub>''</tt> | | <tt>''N<sub>Z</sub>''</tt> | ||
− | | : | + | | : number of values to sample in the z-direction. |
|- | |- | ||
| <tt>''Z<sub>MIN</sub>''</tt> | | <tt>''Z<sub>MIN</sub>''</tt> | ||
− | | : | + | | : minimum coordinate to sample from in the z-direction [in cm] |
|- | |- | ||
| <tt>''Z<sub>MAX</sub>''</tt> | | <tt>''Z<sub>MAX</sub>''</tt> | ||
− | | : | + | | : maximum coordinate to sample from in the z-direction [in cm] |
|- | |- | ||
|} | |} | ||
Line 2,153: | Line 2,764: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | *The data from each sample is written in a separate <tt>[input]_sample | + | *The data from each sample is written in a separate output file: |
− | * | + | **Default: <tt>[input]_sample[n].m</tt>, where "<tt>n</tt>" is the sample number. |
− | *Materials with no temperature specified either in their [[ | + | **Coupled multi-physics calculation: <tt>[input]_sample[n]_iter[i].m</tt>, where "<tt>i</tt>" is the iteration number. |
+ | **Burnup calculations: <tt>[input]_sample[n]_bstep[bu].m</tt>, where "<tt>bu</tt>" is the burnup step index. | ||
+ | *** Coupled multi-physics calculation: <tt>[input]_sample[n]_bstep[bu]_iter[i].m</tt> | ||
+ | **Time-dependent calculations: <tt>[input]_sample[n]_tstep[t].m</tt>, where "<tt>t</tt>" is the time step index | ||
+ | *** Coupled multi-physics calculation: <tt>[input]_sample[n]_tstep[t]_iter[i].m</tt> | ||
+ | *Sampling units: | ||
+ | ** Density: positive values = atomic densities [in b<sup>-1</sup> cm<sup>-1</sup>], negative value = mass density [in g/cm<sup>3</sup>]. | ||
+ | ** Temperature: [in K] | ||
+ | *Materials with no temperature specified either in their [[#mat|mat]] card or through an interface [[#ifc|ifc]] card definition will show a temperature of 0 K. | ||
=== sens (sensitivity calculation definition)<span id="sens"></span> === | === sens (sensitivity calculation definition)<span id="sens"></span> === | ||
Line 2,167: | Line 2,786: | ||
=== solid (irregular 3D geometry definition)<span id="solid"></span> === | === solid (irregular 3D geometry definition)<span id="solid"></span> === | ||
− | '''solid 1''' ''UNI'' ''BGUNI'' | + | '''solid 1''' ''UNI<sub>0</sub>'' ''BGUNI'' |
''MESH_SPLIT'' ''MESH_DIM'' ''SZ<sub>1</sub>'' ''SZ<sub>2</sub>'' ... ''SZ<sub>MESH_DIM</sub>'' | ''MESH_SPLIT'' ''MESH_DIM'' ''SZ<sub>1</sub>'' ''SZ<sub>2</sub>'' ... ''SZ<sub>MESH_DIM</sub>'' | ||
''POINTS_FILE'' | ''POINTS_FILE'' | ||
Line 2,178: | Line 2,797: | ||
{| | {| | ||
− | | <tt>''UNI''</tt> | + | | <tt>''UNI<sub>0</sub>''</tt> |
| : universe name for the irregular geometry | | : universe name for the irregular geometry | ||
|- | |- | ||
Line 2,185: | Line 2,804: | ||
|- | |- | ||
| <tt>''MESH_SPLIT''</tt> | | <tt>''MESH_SPLIT''</tt> | ||
− | | : | + | | : splitting criterion for the adaptive search mesh (maximum number of geometry cells in search mesh cell) |
|- | |- | ||
| <tt>''MESH_DIM''</tt> | | <tt>''MESH_DIM''</tt> | ||
Line 2,191: | Line 2,810: | ||
|- | |- | ||
| <tt>''SZ<sub>i</sub>''</tt> | | <tt>''SZ<sub>i</sub>''</tt> | ||
− | | : | + | | : size of the search mesh at level <tt>''i''</tt> |
|- | |- | ||
| <tt>''POINTS_FILE''</tt> | | <tt>''POINTS_FILE''</tt> | ||
− | | : | + | | : path to the unstructured mesh points file |
|- | |- | ||
| <tt>''FACES_FILE''</tt> | | <tt>''FACES_FILE''</tt> | ||
− | | : | + | | : path to the unstructured mesh faces file |
|- | |- | ||
| <tt>''OWNER_FILE''</tt> | | <tt>''OWNER_FILE''</tt> | ||
− | | : | + | | : path to the unstructured mesh owner file |
|- | |- | ||
| <tt>''NEIGHBOUR_FILE''</tt> | | <tt>''NEIGHBOUR_FILE''</tt> | ||
− | | : | + | | : path to the unstructured mesh neighbour file |
|- | |- | ||
| <tt>''MATERIALS_FILE''</tt> | | <tt>''MATERIALS_FILE''</tt> | ||
− | | : | + | | : path to the unstructured mesh materials file |
|} | |} | ||
− | '''solid 2''' ''UNI'' ''BGUNI'' | + | <u>Notes:</u> |
+ | *For more information on the unstructured mesh based geometry see [[Unstructured mesh based input]]. | ||
+ | *For a practical example: [[Simple umsh 8 cubes input]]. | ||
+ | |||
+ | '''solid 2''' ''UNI<sub>0</sub>'' ''BGUNI'' | ||
''MESH_SPLIT'' ''MESH_DIM'' ''SZ<sub>1</sub>'' ''SZ<sub>2</sub>'' ... ''SZ<sub>MESH_DIM</sub>'' | ''MESH_SPLIT'' ''MESH_DIM'' ''SZ<sub>1</sub>'' ''SZ<sub>2</sub>'' ... ''SZ<sub>MESH_DIM</sub>'' | ||
''MODE'' ''R0'' | ''MODE'' ''R0'' | ||
Line 2,224: | Line 2,847: | ||
{| | {| | ||
− | | <tt>''UNI''</tt> | + | | <tt>''UNI<sub>0</sub>''</tt> |
| : universe name for the irregular geometry | | : universe name for the irregular geometry | ||
|- | |- | ||
Line 2,231: | Line 2,854: | ||
|- | |- | ||
| <tt>''MESH_SPLIT''</tt> | | <tt>''MESH_SPLIT''</tt> | ||
− | | : | + | | : splitting criterion for the adaptive search mesh (maximum number of geometry cells in search mesh cell) |
|- | |- | ||
| <tt>''MESH_DIM''</tt> | | <tt>''MESH_DIM''</tt> | ||
Line 2,240: | Line 2,863: | ||
|- | |- | ||
| <tt>''MODE''</tt> | | <tt>''MODE''</tt> | ||
− | | : | + | | : mode for handling the triangulated geometry (1 = "fast", 2 = "safe"). |
|- | |- | ||
| <tt>''R0''</tt> | | <tt>''R0''</tt> | ||
− | | : | + | | : radius inside which two points of the STL-geometry are joined into one. |
|- | |- | ||
| <tt>''BODY<sub>i</sub>''</tt> | | <tt>''BODY<sub>i</sub>''</tt> | ||
− | | : | + | | : name of solid body <tt>''i''</tt> |
|- | |- | ||
| <tt>''CELL<sub>i</sub>''</tt> | | <tt>''CELL<sub>i</sub>''</tt> | ||
− | | : | + | | : name of geometry cell <tt>''i''</tt> linked with body <tt>''i''</tt> |
|- | |- | ||
| <tt>''MAT<sub>i</sub>''</tt> | | <tt>''MAT<sub>i</sub>''</tt> | ||
− | | : | + | | : material filling cell <tt>''i''</tt> |
|- | |- | ||
| <tt>''FILE<sub>i</sub>''</tt> | | <tt>''FILE<sub>i</sub>''</tt> | ||
− | | : | + | | : path to a file containing an STL solid model, multiple files can be linked to one body |
|- | |- | ||
| <tt>''SCALE<sub>i</sub>''</tt> | | <tt>''SCALE<sub>i</sub>''</tt> | ||
− | | : | + | | : scaling factor for the STL model in <tt>''FILE<sub>i</sub>''</tt> |
|- | |- | ||
| <tt>''X<sub>i</sub>''</tt> | | <tt>''X<sub>i</sub>''</tt> | ||
− | | : | + | | : shift in x-direction to the STL model in <tt>''FILE<sub>i</sub>''</tt> |
|- | |- | ||
| <tt>''Y<sub>i</sub>''</tt> | | <tt>''Y<sub>i</sub>''</tt> | ||
− | | : | + | | : shift in y-direction to the STL model in <tt>''FILE<sub>i</sub>''</tt> |
|- | |- | ||
| <tt>''Z<sub>i</sub>''</tt> | | <tt>''Z<sub>i</sub>''</tt> | ||
− | | : | + | | : shift in z-direction to the STL model in <tt>''FILE<sub>i</sub>''</tt> |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | * | + | *Special <tt>''MAT<sub>i</sub>''</tt> entry: the material entries can be replaced by "<tt>fill ''UNI<sub>i</sub>''</tt>", in which case the region is filled by another universe, <tt>''UNI<sub>i</sub>''</tt>. |
+ | *For a practical example: [[Stanford critical bunny]]. | ||
'''solid 3''' | '''solid 3''' | ||
Line 2,280: | Line 2,904: | ||
{| | {| | ||
| <tt>''INTERFACE_FILE''</tt> | | <tt>''INTERFACE_FILE''</tt> | ||
− | | : | + | | : path to the [[Multi-physics_interface#Unstructured_mesh_based_interface_and_geometry_definition_.28type_9.29|interface file]] containing the rest of the parameters |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | |||
*For more information on the unstructured mesh based geometry see [[Unstructured mesh based input]]. | *For more information on the unstructured mesh based geometry see [[Unstructured mesh based input]]. | ||
− | *For a | + | *For a practical example: [[Simple umsh 8 cubes input]]. |
=== src (source definition)<span id="src"></span> === | === src (source definition)<span id="src"></span> === | ||
Line 2,302: | Line 2,925: | ||
[ [[#src_ss|'''ss''']] ''SURF'' ] | [ [[#src_ss|'''ss''']] ''SURF'' ] | ||
[ [[#src_sd|'''sd''']] ''U'' ''V'' ''W'' ] | [ [[#src_sd|'''sd''']] ''U'' ''V'' ''W'' ] | ||
+ | [ [[#src_sa|'''sa''']] ''PHI'' ] | ||
[ [[#src_se|'''se''']] ''E'' ] | [ [[#src_se|'''se''']] ''E'' ] | ||
[ [[#src_sb|'''sb''']] ''N'' ''INTT'' ''E<sub>1</sub>'' ''WGT<sub>1</sub>'' ''E<sub>2</sub>'' ''WGT<sub>2</sub>'' ... ] | [ [[#src_sb|'''sb''']] ''N'' ''INTT'' ''E<sub>1</sub>'' ''WGT<sub>1</sub>'' ''E<sub>2</sub>'' ''WGT<sub>2</sub>'' ... ] | ||
Line 2,309: | Line 2,933: | ||
[ [[#src_si|'''si''']] ''N'' ''P<sub>1</sub>'' ''P<sub>2</sub>'' ... ] | [ [[#src_si|'''si''']] ''N'' ''P<sub>1</sub>'' ''P<sub>2</sub>'' ... ] | ||
[ [[#src_sg|'''sg''']] ''MAT'' ''MODE'' ] | [ [[#src_sg|'''sg''']] ''MAT'' ''MODE'' ] | ||
− | Source definition. The first | + | Source definition. The two first parameters: |
{| | {| | ||
+ | | <tt>''NAME''</tt> | ||
+ | |: source name | ||
+ | |- | ||
| <tt>''PART''</tt> | | <tt>''PART''</tt> | ||
| : particle type (n = neutron, p = photon) | | : particle type (n = neutron, p = photon) | ||
|} | |} | ||
− | + | The remaining parameters are defined by separate key words followed by the input values. | |
+ | |||
+ | <u>Notes:</u> | ||
+ | *The particle type <tt>''PART''</tt> is optional in single particle simulations. | ||
+ | *A single source card may include one or several source types. | ||
+ | |||
+ | <u>Source types:</u> | ||
Source weight (<tt>'''sw'''</tt>):<span id="src_sw"></span> | Source weight (<tt>'''sw'''</tt>):<span id="src_sw"></span> | ||
Line 2,369: | Line 3,002: | ||
{| | {| | ||
| <tt>''X''</tt>, <tt>''Y''</tt>, <tt>''Z''</tt>, | | <tt>''X''</tt>, <tt>''Y''</tt>, <tt>''Z''</tt>, | ||
− | | : coordinates of the source point | + | | : coordinates of the source point [in cm] |
|} | |} | ||
Line 2,381: | Line 3,014: | ||
{| | {| | ||
| <tt>''X<sub>MIN</sub>''</tt>, <tt>''X<sub>MAX</sub>''</tt> | | <tt>''X<sub>MIN</sub>''</tt>, <tt>''X<sub>MAX</sub>''</tt> | ||
− | | : | + | | : boundaries on X-axis [in cm] |
|- | |- | ||
| <tt>''Y<sub>MIN</sub>''</tt>, <tt>''Y<sub>MAX</sub>''</tt> | | <tt>''Y<sub>MIN</sub>''</tt>, <tt>''Y<sub>MAX</sub>''</tt> | ||
− | | : | + | | : boundaries on Y-axis [in cm] |
|- | |- | ||
| <tt>''Z<sub>MIN</sub>''</tt>, <tt>''Z<sub>MAX</sub>''</tt> | | <tt>''Z<sub>MIN</sub>''</tt>, <tt>''Z<sub>MAX</sub>''</tt> | ||
− | | : | + | | : boundaries on Z-axis [in cm] |
|- | |- | ||
| <tt>''R<sub>MIN</sub>''</tt>, <tt>''R<sub>MAX</sub>''</tt> | | <tt>''R<sub>MIN</sub>''</tt>, <tt>''R<sub>MAX</sub>''</tt> | ||
− | | : | + | | : radial boundaries [in cm] |
|- | |- | ||
|} | |} | ||
Line 2,401: | Line 3,034: | ||
− | + | Source surface (<tt>'''ss'''</tt>):<span id="src_ss"></span> | |
{| | {| | ||
Line 2,410: | Line 3,043: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
*The surface source is currently limited to infinite vertical cylinder (<tt>'''cyl'''</tt>) and sphere (<tt>'''sph'''</tt>) surface types. | *The surface source is currently limited to infinite vertical cylinder (<tt>'''cyl'''</tt>) and sphere (<tt>'''sph'''</tt>) surface types. | ||
− | * | + | *The default behavior is that particles are started in the direction of the outward surface normal. |
+ | *Positive and negative surface entries refer to neutrons being emitted in the direction of the positive and negative surface normal, respectively. | ||
+ | ** Meaning: positive = outward, negative = inward - same convention as for the surface detectors. | ||
Line 2,424: | Line 3,059: | ||
*If no directional dependence is defined, the direction of source particles is sampled isotropically. | *If no directional dependence is defined, the direction of source particles is sampled isotropically. | ||
+ | |||
+ | Source angular-aperture (<tt>'''sa'''</tt>):<span id="src_sa"></span> | ||
+ | |||
+ | {| | ||
+ | | <tt>''PHI''</tt> | ||
+ | | : polar angle [in degrees] | ||
+ | |} | ||
+ | |||
+ | <u>Notes</u> | ||
+ | *The source angular-aperture option can be set to define the semi-aperture with respect a direction. | ||
+ | *The option requires the definition of a unidirectional source (<tt>'''sd'''</tt>). | ||
Source energy (<tt>'''se'''</tt>):<span id="src_se"></span> | Source energy (<tt>'''se'''</tt>):<span id="src_se"></span> | ||
Line 2,429: | Line 3,075: | ||
{| | {| | ||
| <tt>''E''</tt> | | <tt>''E''</tt> | ||
− | | : energy of source particles | + | | : energy of source particles [in MeV] |
|} | |} | ||
Line 2,448: | Line 3,094: | ||
|- | |- | ||
| <tt>''E<sub>n</sub>''</tt> | | <tt>''E<sub>n</sub>''</tt> | ||
− | | : upper boundary of the energy bin | + | | : upper boundary of the energy bin [in MeV] |
|- | |- | ||
| <tt>''WGT<sub>n</sub>''</tt> | | <tt>''WGT<sub>n</sub>''</tt> | ||
Line 2,467: | Line 3,113: | ||
|- | |- | ||
| <tt>''MT''</tt> | | <tt>''MT''</tt> | ||
− | | : reaction number | + | | : reaction number identifier |
|} | |} | ||
Line 2,481: | Line 3,127: | ||
{| | {| | ||
| <tt>''T<sub>MIN</sub>''</tt>, <tt>''T<sub>MAX</sub>''</tt> | | <tt>''T<sub>MIN</sub>''</tt>, <tt>''T<sub>MAX</sub>''</tt> | ||
− | | : time boundaries | + | | : time boundaries [in s] |
|} | |} | ||
Line 2,500: | Line 3,146: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | *Source files allow defining arbitrary distributions by reading the particle coordinates, direction, energy, weight and time from a file. | + | *Source files allow defining arbitrary distributions by reading the particle coordinates, direction, energy, weight and time from a file: [<tt> x y z u v w E wgt t </tt>] . |
*Source files can be produced using the <tt>'''df'''</tt> entry of [[#det_df|detector cards]], or the [[#set csw|set csw]] or [[#set gsw|set gsw]] options. | *Source files can be produced using the <tt>'''df'''</tt> entry of [[#det_df|detector cards]], or the [[#set csw|set csw]] or [[#set gsw|set gsw]] options. | ||
Line 2,525: | Line 3,171: | ||
{| | {| | ||
| <tt>''MAT''</tt> | | <tt>''MAT''</tt> | ||
− | | : material name | + | | : material name |
|- | |- | ||
| <tt>''MODE''</tt> | | <tt>''MODE''</tt> | ||
Line 2,532: | Line 3,178: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | *Radioactive decay source combines material compositions to decay data read from ENDF format libraries and forms the normalized source distribution automatically. | + | *Radioactive decay source combines material compositions to decay data read from ENDF format<ref name="endf" /> libraries and forms the normalized source distribution automatically. |
− | *Material compositions can be defined manually, or read from binary restart files produced by a burnup or activation calculation (see the [[#set rfw|set rfw]] and [[#set rfr|set rfr]] options). | + | *Radioactive material: |
− | * | + | **Material compositions can be defined manually, or read from binary restart files produced by a burnup or activation calculation (see the [[#set rfw|set rfw]] and [[#set rfr|set rfr]] options). |
− | *The analog sampling mode preserves the average number of particles produced in radioactive decay, but may lead to poor sampling efficiency in geometries with both low and high-active materials. | + | **There is a special entry for the <tt>''MAT''</tt> parameter: |
− | *The implicit sampling mode preserves the total statistical weight of emitted particles and produces a uniform source distribution over activated materials. | + | ***"<tt>-1</tt>": to refer to all radioactive materials in the calculation system |
− | * | + | *Sampling mode: |
+ | **The analog sampling mode preserves the average number of particles produced in radioactive decay, but may lead to poor sampling efficiency in geometries with both low and high-active materials. | ||
+ | **The implicit sampling mode preserves the total statistical weight of emitted particles and produces a uniform source distribution over activated materials. | ||
+ | *The radiation types included are discrete line and continuum spectra for photon and neutron reactions. | ||
+ | **The radioactive decay source in version 2.1.28 and earlier is limited to photon line spectra. | ||
*The calculation produces an additional output file <tt>[input]_gsrc.m</tt> or <tt>[input]_nsrc.m</tt> that contains the gamma/neutron source spectra, respectively. | *The calculation produces an additional output file <tt>[input]_gsrc.m</tt> or <tt>[input]_nsrc.m</tt> that contains the gamma/neutron source spectra, respectively. | ||
*See [[Radioactive decay source, practical example|practical example]] for more information. | *See [[Radioactive decay source, practical example|practical example]] for more information. | ||
− | === | + | === strans (surface transformation)<span id="strans"></span> === |
− | + | Defines surface transformations. Shortcut for "<tt>trans s</tt>". | |
− | + | <u>Notes:</u> | |
− | + | *The parameters associated with the transformation follow the standard transformation cards syntax without '''trans''' <tt>''TYPE''</tt> identifier. | |
− | See [[#trans (transformations)|transformations]]. | + | *See [[#trans (transformations)|transformations]]. |
=== surf (surface definition)<span id="surf"></span> === | === surf (surface definition)<span id="surf"></span> === | ||
Line 2,582: | Line 3,232: | ||
'''thermstoch''' ''NAME'' ''TEMP'' ''LIB<sub>1</sub>'' ''LIB<sub>2</sub>'' | '''thermstoch''' ''NAME'' ''TEMP'' ''LIB<sub>1</sub>'' ''LIB<sub>2</sub>'' | ||
− | Defines thermal scattering data that can be linked to nuclides using input entry '''moder''' in the [[#mat (material definition)|material cards]]. | + | Defines thermal scattering data that can be linked to nuclides using input entry '''moder''' in the [[#mat (material definition)|material cards]]. Input values: |
− | |||
{| | {| | ||
| <tt>''NAME''</tt> | | <tt>''NAME''</tt> | ||
Line 2,593: | Line 3,242: | ||
|- | |- | ||
| <tt>''TEMP''</tt> | | <tt>''TEMP''</tt> | ||
− | | : temperature to which the thermal scattering data is interpolated | + | | : temperature to which the thermal scattering data is interpolated [in K] |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | + | * On-the-fly thermal motion sampling (TMS) temperature treatment: | |
− | * | + | **It requires the third value of the therm card to be set to "<tt>0</tt>" |
− | *Thermal scattering data is interpolated using the methodology of makxsf code | + | **The thermal scattering data is automatically interpolated to the local temperature. |
− | * | + | **The local temperature is either defined using: |
− | *The continuous S(α, β) formalism is available from version 2.1.32 on. | + | *** the '''tms''' entry in the material card (see [[#mat|mat card]]) |
− | * | + | *** the multi-physics interface (see [[#ifc|ifc card]]), where the temperature limits are defined using the '''tft''' entry in the material card (see [[#mat|mat card]]) |
+ | **The thermal scattering libraries <tt>''LIB<sub>i</sub>''</tt> must cover the whole range in which the materials appear in the geometry, i.e. data extrapolation is not supported. | ||
+ | *Interpolation: | ||
+ | **Thermal scattering data is interpolated using the methodology of makxsf code<ref name="makxsf">Brown, F. B. ''"The makxsf Code with Doppler Broadening"'', Los Alamos National Laboratory Tech. Rep., LA-UR-06-7002, Los Alamos, NM, [https://mcnp.lanl.gov/pdf_files/TechReport_2006_LANL_LA-UR-06-7002_Brown.pdf 2006]</ref>. | ||
+ | **Alternatively, the interpolation can be performed using the stochastic mixing approach with the '''thermstoch''' entry. | ||
+ | ***This interpolation mode doesn't support on-the-fly interpolation. | ||
+ | *The continuous S(α, β) formalism: | ||
+ | **It is available from version 2.1.32 on. | ||
+ | **The on-the-fly temperature treatment is available from version 2.2.0 and on. | ||
=== tme (time binning definition)<span id="tme"></span> === | === tme (time binning definition)<span id="tme"></span> === | ||
Line 2,622: | Line 3,279: | ||
|- | |- | ||
| <tt>''LIM<sub>n</sub>''</tt> | | <tt>''LIM<sub>n</sub>''</tt> | ||
− | | : time bin boundaries in arbitrary binning | + | | : time bin boundaries in arbitrary binning [in s] |
|- | |- | ||
| <tt>''T<sub>min</sub>''</tt> | | <tt>''T<sub>min</sub>''</tt> | ||
− | | : minimum time boundary in uniform or log-uniform binning | + | | : minimum time boundary in uniform or log-uniform binning [in s] |
|- | |- | ||
| <tt>''T<sub>max</sub>''</tt> | | <tt>''T<sub>max</sub>''</tt> | ||
− | | : maximum time boundary in uniform or log-uniform binning | + | | : maximum time boundary in uniform or log-uniform binning [in s] |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | |||
*The first limit in the arbitrary type (type = 1), is the lower bound of the first bin. The second limit is the upper bound of the first bin and so on. | *The first limit in the arbitrary type (type = 1), is the lower bound of the first bin. The second limit is the upper bound of the first bin and so on. | ||
*Time binning is used with [[#det (detector definition)|detectors]] and [[Dynamic external source simulation mode|dynamic simulation mode]]. | *Time binning is used with [[#det (detector definition)|detectors]] and [[Dynamic external source simulation mode|dynamic simulation mode]]. | ||
Line 2,659: | Line 3,315: | ||
|- | |- | ||
| <tt>''IDX''</tt> | | <tt>''IDX''</tt> | ||
− | | : index number | + | | : index number of lattice position to which the lattice transformation (type L) is applied |
|- | |- | ||
| <tt>''LVL''</tt> | | <tt>''LVL''</tt> | ||
Line 2,665: | Line 3,321: | ||
|- | |- | ||
| <tt>''X'',''Y'',''Z''</tt> | | <tt>''X'',''Y'',''Z''</tt> | ||
− | | : translation vector | + | | : translation vector [in cm] |
|- | |- | ||
| <tt>''θ<sub>x</sub>'' ''θ<sub>y</sub>'' ''θ<sub>z</sub>''</tt> | | <tt>''θ<sub>x</sub>'' ''θ<sub>y</sub>'' ''θ<sub>z</sub>''</tt> | ||
− | | : rotation angles with respect to x-, y- and z-axes | + | | : rotation angles with respect to x-, y- and z-axes [in degrees] |
|- | |- | ||
| <tt>''α<sub>1</sub>'' ... ''α<sub>9</sub>''</tt> | | <tt>''α<sub>1</sub>'' ... ''α<sub>9</sub>''</tt> | ||
Line 2,677: | Line 3,333: | ||
|- | |- | ||
| <tt>''X<sub>0</sub>'',''Y<sub>0</sub>'',''Z<sub>0</sub>''</tt> | | <tt>''X<sub>0</sub>'',''Y<sub>0</sub>'',''Z<sub>0</sub>''</tt> | ||
− | | : | + | | : origin of vector defining rotation axis [in cm] |
|- | |- | ||
| <tt>''I'',''J'',''K''</tt> | | <tt>''I'',''J'',''K''</tt> | ||
− | | : | + | | : components of vector defining rotation axis. |
|- | |- | ||
| <tt>''β''</tt> | | <tt>''β''</tt> | ||
− | | : | + | | : angle around rotation axis defined by a vector [in degrees]. |
|- | |- | ||
|} | |} | ||
− | <u> | + | The possible transformation types are: |
+ | ::{| class="wikitable" style="text-align: left;" | ||
+ | ! Type | ||
+ | ! Description | ||
+ | ! Notes | ||
+ | |- | ||
+ | | <tt>s</tt> | ||
+ | | surface | ||
+ | | | ||
+ | |- | ||
+ | | <tt>f</tt> | ||
+ | | fill | ||
+ | | It is applied in the universe filling the given cell. | ||
+ | |- | ||
+ | | <tt>u</tt> | ||
+ | | universe | ||
+ | | ''Special type'': <u>level</u> transformation, in which the coordinates in the given universe are obtained relative to geometry level <tt>''LVL''</tt>. | ||
+ | |- | ||
+ | | <tt>l</tt> | ||
+ | | lattice | ||
+ | | It requires to provide the index number <tt>''IDX''</tt> of lattice position to which the transformation is applied. | ||
+ | |- | ||
+ | | <tt>d</tt> | ||
+ | | mesh detector | ||
+ | | It is associated to mesh detectors (such as '''dx''', '''dy''', '''dz''', '''dh''', '''dn''' or '''dmesh''', see [[#det|det card]]) | ||
+ | |- | ||
+ | | <tt>sr</tt> | ||
+ | | source | ||
+ | | It is inverted compared to how surface, universe, etc. are handled | ||
+ | |- | ||
+ | |} | ||
− | + | <u>Notes:</u> | |
− | + | *Translations: by providing the translation vector. | |
− | * | + | **By default translations are applied before rotations, and the order can be switched using the <tt>''ORD''</tt> parameter. |
− | * | + | *Rotations: |
− | *By default translations are applied before rotations, and the order can be switched using the <tt>''ORD''</tt> parameter. | + | **With respect x-/y-/z-axes: either by providing the three angles with respect to the three coordinate axes, or by defining the rotation matrix. |
− | *Rotations | + | ***In the second case Serpent applies vector multiplication: <math>\vec{r'} = \bold{A} \vec{r}</math> |
− | *To preserve backwards compatibility, input parameters "strans", "utrans", "ftrans" | + | :::where <math>\vec{r}</math> and <math>\vec{r'}</math> are the position vectors before and after the operation and coefficients <tt>''α<sub>1</sub>'' ... ''α<sub>9</sub>''</tt> define the 3 by 3 matrix <math>\bold{A}</math>. |
+ | :*With respect a general axes: using the '''rot''' keyword and associated syntax. | ||
+ | :**In Serpent 2.1.29, a positive value of ''β'' corresponds to rotation to the negative mathematical direction and vice versa. | ||
+ | *Backwards compatibility: | ||
+ | **To preserve backwards compatibility, input parameters "<tt>strans</tt>", "<tt>utrans</tt>", "<tt>ftrans</tt>" and "<tt>dtrans</tt>" without the following type identifier are also accepted for defining surface, universe, fill and detector mesh transformations, respectively. | ||
+ | **To preserve compatibility with Serpent 1, parameter "<tt>trans</tt>" without type identifier defines a universe transformation. | ||
=== transb (burnup transformation)<span id="transb"></span> === | === transb (burnup transformation)<span id="transb"></span> === | ||
Line 2,701: | Line 3,392: | ||
'''transb''' ''STEP'' [ <''trans''> ] | '''transb''' ''STEP'' [ <''trans''> ] | ||
− | Defines burnup-dependent surface, universe | + | Defines burnup-dependent surface, universe, fill, lattice, detector mesh or source transformation. Input values: |
{| | {| | ||
| <tt>''STEP''</tt> | | <tt>''STEP''</tt> | ||
− | | : step | + | | : depletion step (positive value = burnup [in MWd/kg], negative value = time [in d]) |
|- | |- | ||
| <tt><''trans''></tt> | | <tt><''trans''></tt> | ||
Line 2,712: | Line 3,403: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | *The parameters associated with the transformation follow the standard transformation cards syntax without | + | *The parameters associated with the transformation follow the standard transformation cards syntax without '''trans''' identifier. |
+ | *Standard properties applicable to regular or non-time dependent transformations apply. | ||
+ | *For more information, see detailed description on transformations ([[#trans (transformations)|trans card]]). | ||
+ | *Geometry plots associated with burnup transformations are featured from version 2.2.1 and on. | ||
=== transv and transa (velocity and acceleration transformations)<span id="transa"></span><span id="transv"></span> === | === transv and transa (velocity and acceleration transformations)<span id="transa"></span><span id="transv"></span> === | ||
Line 2,720: | Line 3,414: | ||
'''transa''' ''TYPE'' ''UNIT'' [ ''IDX'' ] [ '''tlim''' ''T<sub>0</sub>'' ''T<sub>1</sub>'' ''T<sub>TYPE</sub>'' ] ''A<sub>X</sub>'' ''A<sub>Y</sub>'' ''A<sub>Z</sub>'' | '''transa''' ''TYPE'' ''UNIT'' [ ''IDX'' ] [ '''tlim''' ''T<sub>0</sub>'' ''T<sub>1</sub>'' ''T<sub>TYPE</sub>'' ] ''A<sub>X</sub>'' ''A<sub>Y</sub>'' ''A<sub>Z</sub>'' | ||
− | + | Defines a time-dependent surface, universe, fill, lattice, detector mesh or source transformation. Input values: | |
− | Defines surface, universe, fill, lattice, detector mesh or source transformation. Input values: | + | |
{| | {| | ||
Line 2,731: | Line 3,424: | ||
|- | |- | ||
| <tt>''IDX''</tt> | | <tt>''IDX''</tt> | ||
− | | : index number | + | | : index number of lattice position to which the lattice transformation (type L) is applied |
|- | |- | ||
| <tt>''T<sub>0</sub>''</tt> | | <tt>''T<sub>0</sub>''</tt> | ||
− | | : beginning time of the transformation | + | | : beginning time of the transformation [in s] |
|- | |- | ||
| <tt>''T<sub>1</sub>''</tt> | | <tt>''T<sub>1</sub>''</tt> | ||
− | | : end time of the transformation | + | | : end time of the transformation [in s] |
|- | |- | ||
| <tt>''T<sub>TYPE</sub>''</tt> | | <tt>''T<sub>TYPE</sub>''</tt> | ||
Line 2,743: | Line 3,436: | ||
|- | |- | ||
| <tt>''V<sub>X</sub>'',''V<sub>Y</sub>'',''V<sub>Z</sub>''</tt> | | <tt>''V<sub>X</sub>'',''V<sub>Y</sub>'',''V<sub>Z</sub>''</tt> | ||
− | | : | + | | : initial velocity vector [in cm/s] |
|- | |- | ||
| <tt>''A<sub>X</sub>'',''A<sub>Y</sub>'',''A<sub>Z</sub>''</tt> | | <tt>''A<sub>X</sub>'',''A<sub>Y</sub>'',''A<sub>Z</sub>''</tt> | ||
− | | : | + | | : initial acceleration vector [in cm/s<sup>2</sup>] |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | * | + | *Standard properties applicable to regular or non-time dependent transformations apply. |
*The transformation is updated at the simulation time-interval boundaries. | *The transformation is updated at the simulation time-interval boundaries. | ||
− | *See [[UGM 2016 Moving geometry]]. | + | ** The time-dependent transformation evaluation method option is defined by the [[#set_transtime|set transtime]] option. |
− | *See [[Rotating Translating STL Bunny]]. | + | *For practical examples: |
+ | **See [[UGM 2016 Moving geometry]]. | ||
+ | **See [[Rotating Translating STL Bunny]]. | ||
− | ===umsh (unstructured mesh-based geometry definition) | + | ===umsh (unstructured mesh-based geometry definition)<span id="umsh"></span> === |
''UNI'' ''BGUNI'' | ''UNI'' ''BGUNI'' | ||
Line 2,801: | Line 3,496: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | * | + | *For more information, see the description of the '''solid''' description of how to create a 3D unstructured mesh-based universe geometry ([[#solid|solid card]], type 1). |
=== utrans (universe transformation)<span id="utrans"></span> === | === utrans (universe transformation)<span id="utrans"></span> === | ||
− | See [[#trans (transformations)|transformations]]. | + | Defines universe transformations. Shortcut for "<tt>trans u</tt>". |
+ | |||
+ | <u>Notes:</u> | ||
+ | *The parameters associated with the transformation follow the standard transformation cards syntax without '''trans''' <tt>''TYPE''</tt> identifier. | ||
+ | *See [[#trans (transformations)|transformations]]. | ||
+ | |||
+ | === voro (stochastic Voronoi tessellation geometry definition)<span id="voro"></span> === | ||
+ | |||
+ | '''voro''' ''UNI<sub>0</sub>'' ''UNI<sub>bg</sub>'' ''R<sub>0</sub>'' '''-1''' ''NP'' ''UNI<sub>1</sub>'' ''VF<sub>1</sub>'' [ ''UNI<sub>2</sub>'' ''VF<sub>2</sub>'' ... ] | ||
+ | |||
+ | '''voro''' ''UNI<sub>0</sub>'' ''UNI<sub>bg</sub>'' ''R<sub>0</sub>'' ''FILE'' | ||
+ | |||
+ | Defines a stochastic Voronoi tessellation geometry. Input values: | ||
+ | |||
+ | {| | ||
+ | | <tt>''UNI<sub>0</sub>''</tt> | ||
+ | |: universe name for the Voronoi medium | ||
+ | |- | ||
+ | | <tt>''UNI<sub>bg</sub>''</tt> | ||
+ | |: background universe name filling all undefined space | ||
+ | |- | ||
+ | | <tt>''R<sub>0</sub>''</tt> | ||
+ | |: test radius [in cm] | ||
+ | |- | ||
+ | | <tt>''NP''</tt> | ||
+ | |: number of seed points | ||
+ | |- | ||
+ | | <tt>''UNI<sub>m</sub>''</tt> | ||
+ | |: sub-universe name for the ''m''-th random fragmented polyhedral zone | ||
+ | |- | ||
+ | | <tt>''VF<sub>m</sub>''</tt> | ||
+ | |: volume fraction associated to ''m''-th random fragmented polyhedral zone | ||
+ | |- | ||
+ | | <tt>''FILE''</tt> | ||
+ | |: input file containing the Voronoi data | ||
+ | |} | ||
+ | |||
+ | The <u>syntax of the file</u> containing the Voronoi seed points data is: | ||
+ | |||
+ | ::{| class="toccolours" style="text-align: left;" | ||
+ | |- | ||
+ | | ''X<sub>1</sub>'' ''Y<sub>1</sub>'' ''Z<sub>1</sub>'' ''UNI<sub>1</sub>'' | ||
+ | |- | ||
+ | | ''X<sub>2</sub>'' ''Y<sub>2</sub>'' ''Z<sub>2</sub>'' ''UNI<sub>1</sub>'' | ||
+ | |- | ||
+ | | ... | ||
+ | |- | ||
+ | | ''X<sub>N</sub>'' ''Y<sub>N</sub>'' ''Z<sub>N</sub>'' ''UNI<sub>1</sub>'' | ||
+ | |- | ||
+ | | ''X<sub>N+1</sub>'' ''Y<sub>N+1</sub>'' ''Z<sub>N+1</sub>'' ''UNI<sub>2</sub>'' | ||
+ | |- | ||
+ | | ... | ||
+ | |} | ||
+ | |||
+ | where: | ||
+ | {| | ||
+ | | <tt>''X<sub>n</sub>'', ''Y<sub>n</sub>'', ''Z<sub>n</sub>''</tt> | ||
+ | |: seed points coordinates [in cm] | ||
+ | |- | ||
+ | | <tt>''UNI<sub>m</sub>''</tt> | ||
+ | |: sub-universe name for the ''m''-th random zone associated to the given seed point | ||
+ | |} | ||
+ | |||
+ | <u>Notes:</u> | ||
+ | *The input consists of a list of seed points and associated sub-universes filling the Voronoi cells Alternatively, the number of seeds points and volume fractions of each zone can be provided, letting Serpent sample the positions randomly. | ||
+ | **The advantage of the first option is that the distribution can be defined explicitly, taking into account, for example, the varying level of fragmentation closer to the boundaries. | ||
+ | *The cell search and surfaces distances are based on search mesh and local short-list of points to reduce the computational effort. | ||
+ | **The search mesh is conditioned by the test radius, which should enclose the Voronoi polyhedral cells. | ||
+ | ***Too small radius may result in geometry errors as some points are excluded from all the search mesh cells in which they should be. | ||
+ | ***Too large radius may results in including points in cells that do not actually intersect with the polyhedral boundary. | ||
+ | *The <tt>''DENS''</tt> parameter in the [[#set mcvol|mcvol]] input option can be switched "<tt>on</tt>" to compensate the non-preservation of the volume fractions provided as input due to the randomness of the seed points. | ||
+ | **It applies calculated scaling factors to material densities preserving the original masses (scaling factor = volume MC routine / volume given) | ||
=== wwgen (response matrix based importance map solver)<span id="wwgen"></span> === | === wwgen (response matrix based importance map solver)<span id="wwgen"></span> === | ||
Line 2,850: | Line 3,616: | ||
|- | |- | ||
| <tt>''MIN<sub>n</sub>''</tt> | | <tt>''MIN<sub>n</sub>''</tt> | ||
− | | : minimum mesh boundary (''n''th coordinate) | + | | : minimum mesh boundary (''n''-th coordinate) |
|- | |- | ||
| <tt>''MAX<sub>n</sub>''</tt> | | <tt>''MAX<sub>n</sub>''</tt> | ||
− | | : maximum mesh boundary (''n''th coordinate) | + | | : maximum mesh boundary (''n''-th coordinate) |
|- | |- | ||
| <tt>''SZ<sub>n</sub>''</tt> | | <tt>''SZ<sub>n</sub>''</tt> | ||
− | | : number of mesh cells (''n''th coordinate) | + | | : number of mesh cells (''n''-th coordinate) |
|- | |- | ||
| <tt>''LIM<sub>nm</sub>''</tt> | | <tt>''LIM<sub>nm</sub>''</tt> | ||
− | | : mesh boundary ''m''th (''n''th coordinate) | + | | : mesh boundary ''m''-th (''n''-th coordinate) |
|- | |- | ||
| <tt>''X<sub>0</sub>'', ''Y<sub>0</sub>''</tt> | | <tt>''X<sub>0</sub>'', ''Y<sub>0</sub>''</tt> | ||
Line 2,891: | Line 3,657: | ||
*Importance (weight window) meshes are read using the [[#wwin (weight window mesh definition)|wwin card]]. | *Importance (weight window) meshes are read using the [[#wwin (weight window mesh definition)|wwin card]]. | ||
*See also practical examples on [[Variance reduction]]. | *See also practical examples on [[Variance reduction]]. | ||
− | |||
=== wwin (weight window mesh definition)<span id="wwin"></span> === | === wwin (weight window mesh definition)<span id="wwin"></span> === | ||
Line 2,910: | Line 3,675: | ||
|} | |} | ||
− | + | The remaining parameters are defined by separate key words followed by the input values. | |
<u>Notes:</u> | <u>Notes:</u> | ||
*Only works in external source simulation mode. | *Only works in external source simulation mode. | ||
− | *Importance (weight window) meshes can be generated by running the [[#wwgen (response matrix based importance map solver)|response matrix based solver]], or read in MCNP WWINP format. | + | *Importance (weight window) meshes can be generated by running the [[#wwgen (response matrix based importance map solver)|response matrix based solver]], or read in MCNP WWINP format<ref>Kulesza, J. A. (ed.), ''“MCNP code version 6.3.0 Theory & User Manual: Appendix A Mesh-Based WWINP, WWOUT, and WWONE File Format,”'' LA-UR-22-30006, Rev. 1, Los Alamos National Laboratory [https://mcnp.lanl.gov/pdf_files/TechReport_2022_LANL_LA-UR-22-30006Rev.1_KuleszaAdamsEtAl.pdf (2022)].</ref>. |
*Importance maps can be visualized using the [[#plot (geometry plot definition)|geometry plotter]]. | *Importance maps can be visualized using the [[#plot (geometry plot definition)|geometry plotter]]. | ||
*See also [[#set wwb|set wwb]] and [[#set maxsplit|set maxsplit]] for setting options for weight windows, splitting and Russian roulette. | *See also [[#set wwb|set wwb]] and [[#set maxsplit|set maxsplit]] for setting options for weight windows, splitting and Russian roulette. | ||
*See also practical examples on [[Variance reduction]]. | *See also practical examples on [[Variance reduction]]. | ||
− | |||
+ | |||
+ | <u>Weight-window mesh paramters:</u> | ||
Mesh file (<tt>'''wf'''</tt>):<span id="wwin_wf"></span> | Mesh file (<tt>'''wf'''</tt>):<span id="wwin_wf"></span> | ||
Line 2,948: | Line 3,714: | ||
|- | |- | ||
| <tt>''E''</tt> | | <tt>''E''</tt> | ||
− | | : energy used for renormalization | + | | : energy used for renormalization [in MeV] |
|} | |} | ||
Line 3,048: | Line 3,814: | ||
|- | |- | ||
| <tt>''DSPL<sub>i</sub>''</tt> | | <tt>''DSPL<sub>i</sub>''</tt> | ||
− | | : density split criterion (negative values | + | | : density split criterion (positive value = atomic density [in b<sup>-1</sup>cm<sup>-1</sup>], negative values = mass density [in g/cm<sup>3</sup>]) |
|- | |- | ||
| <tt>''SZ<sub>i</sub>''</tt> | | <tt>''SZ<sub>i</sub>''</tt> | ||
− | | : minimum cell dimension | + | | : minimum cell dimension [in cm] |
|} | |} | ||
Line 3,057: | Line 3,823: | ||
*The adaptive mesh option (<tt>''ITP''</tt> = 2 or 3) starts with a coarse base mesh, and refines the resolution iteratively. | *The adaptive mesh option (<tt>''ITP''</tt> = 2 or 3) starts with a coarse base mesh, and refines the resolution iteratively. | ||
− | *There are two adaptive mesh options | + | *There are two adaptive mesh options: |
− | *Cell splitting is defined using the <tt>''NX'', ''NY''</tt> and <tt>''NZ''</tt> options. For example <tt>''NX''</tt> = 2, <tt>''NY''</tt> = 2, <tt>''NZ''</tt> = 2 results in each cell being split to 8 sub-cells (octree mesh). For 2D meshes the <tt>''NZ''</tt> parameter must be set to 1. | + | **In the geometry-based option (<tt>''ITP''</tt> = 2) Serpent covers the geometry with <tt>''NTRK''</tt> random tracks and splits cells according to density criteria. |
− | *Splitting is carried out recursively, until limiting criteria are met | + | **In the tracking-based option (<tt>''ITP''</tt> = 3) the tracks are started from the source instead. The procedure is repeated <tt>''NLOOP''</tt> times. |
− | *The importance split criterion defines the maximum relative difference between the importances of two adjacent cells. If the criterion is not met, both cells are split. | + | *Cell splitting is defined using the <tt>''NX'', ''NY''</tt> and <tt>''NZ''</tt> options. |
− | *The neighbor split criterion defines the maximum number of neighbor allowed for a cell. If the criterion is not met, the cell is split. | + | **For example <tt>''NX''</tt> = 2, <tt>''NY''</tt> = 2, <tt>''NZ''</tt> = 2 results in each cell being split to 8 sub-cells (octree mesh). |
+ | **For 2D meshes the <tt>''NZ''</tt> parameter must be set to "1". | ||
+ | *Splitting is carried out recursively, until limiting criteria are met. | ||
+ | **The importance split criterion defines the maximum relative difference between the importances of two adjacent cells. | ||
+ | ***If the criterion is not met, both cells are split. | ||
+ | **The neighbor split criterion defines the maximum number of neighbor allowed for a cell. | ||
+ | ***If the criterion is not met, the cell is split. | ||
+ | **The <tt>''DSPL''</tt> and <tt>''SZ<sub>i</sub>''</tt> parameters define upper density boundaries and minimum cell sizes for stopping the splits. | ||
== Input options<span id="input options"></span> == | == Input options<span id="input options"></span> == | ||
Line 3,071: | Line 3,844: | ||
'''set absrate''' ''A'' [ ''MAT'' ] | '''set absrate''' ''A'' [ ''MAT'' ] | ||
− | Sets normalization to total absorption rate. | + | Sets normalization to total absorption rate. Input values: |
{| | {| | ||
| <tt>''F''</tt> | | <tt>''F''</tt> | ||
− | | : number of neutrons absorbed per second | + | | : number of neutrons absorbed per second [in neutrons/s] |
|- | |- | ||
| <tt>''MAT''</tt> | | <tt>''MAT''</tt> | ||
Line 3,084: | Line 3,857: | ||
*Normalization is needed to relate the Monte Carlo reaction rate estimates to a user-given parameter. | *Normalization is needed to relate the Monte Carlo reaction rate estimates to a user-given parameter. | ||
*Absorption includes all reactions in which the incident neutron is lost, i.e. all capture reactions and fission. | *Absorption includes all reactions in which the incident neutron is lost, i.e. all capture reactions and fission. | ||
− | * | + | *The default normalization: |
− | + | **It is set to unit total loss rate (neutron transport) and to unit total source rate (photon transport). | |
+ | **In coupled neutron-photon transport simulations the normalization is driven by the neutron normalization. | ||
*For other normalization options, see: [[#set power|set power]], [[#set powdens|set powdens]], [[#set flux|set flux]], [[#set genrate|set genrate]], [[#set fissrate|set fissrate]], [[#set lossrate|set lossrate]], [[#set srcrate|set srcrate]], [[#set sfrate|set sfrate]]. | *For other normalization options, see: [[#set power|set power]], [[#set powdens|set powdens]], [[#set flux|set flux]], [[#set genrate|set genrate]], [[#set fissrate|set fissrate]], [[#set lossrate|set lossrate]], [[#set srcrate|set srcrate]], [[#set sfrate|set sfrate]]. | ||
*See also Section 5.8 of [http://montecarlo.vtt.fi/download/Serpent_manual.pdf Serpent 1 User Manual]. | *See also Section 5.8 of [http://montecarlo.vtt.fi/download/Serpent_manual.pdf Serpent 1 User Manual]. | ||
Line 3,103: | Line 3,877: | ||
*If the file path contains special characters it is advised to enclose it within quotes. | *If the file path contains special characters it is advised to enclose it within quotes. | ||
*A default directory path can be set by defining environment variable <tt>SERPENT_DATA</tt>. The code looks for cross section directory files in this path if not found at the absolute. | *A default directory path can be set by defining environment variable <tt>SERPENT_DATA</tt>. The code looks for cross section directory files in this path if not found at the absolute. | ||
− | *A default cross section directory file can be set by defining environment variable <tt>SERPENT_ACELIB</tt>. This file will be used if no other path is given with '''set acelib'''. | + | *A default cross section directory file can be set by defining environment variable <tt>SERPENT_ACELIB</tt>. |
+ | **This file will be used if no other path is given with '''set acelib'''. | ||
=== set adf === | === set adf === | ||
'''set adf''' ''UNI SURF SYM [ENF]'' | '''set adf''' ''UNI SURF SYM [ENF]'' | ||
− | Sets parameters for the calculation of assembly discontinuity factors (ADFs). Input values: | + | Sets parameters for the calculation of assembly discontinuity factors (ADFs) and related net and partial currents. Input values: |
{| | {| | ||
Line 3,121: | Line 3,896: | ||
|- | |- | ||
| <tt>''ENF''</tt> | | <tt>''ENF''</tt> | ||
− | | : option to | + | | : option to switch on (1/yes) or off (0/no) a non-standard calculation approach. The default option is "<tt>off</tt>" |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
+ | *ADFs are calculated in the few-group structure for the group constant generation (see [[#set nfg|set nfg]] option). | ||
+ | *The calculation of ADFs is currently allowed only for infinite planes and square and hexagonal prisms. | ||
+ | **Sign moments of net and partial currents are not scored for [[Surface_types#Regular_prisms|Y-type infinite/truncated hexagonal prisms]]. | ||
− | * | + | *Methodology: |
− | * | + | **If the universe is surrounded by zero net-current (reflective) boundary conditions, the ADFs are calculated as the ratios of surface- and volume-averaged heterogeneous flux. |
− | * | + | **If the net current is non-zero, the calculation is based on the ratio of surface-averaged homogeneous and heterogeneous flux. |
− | * | + | ***The homogeneous flux is obtained from a [[Diffusion flux solver|built-in diffusion flux solver]]. |
− | * | + | **The default behaviour (standard approach) can be changed via the <tt>''ENF''</tt> parameter: |
− | * | + | ***If the flag is "<tt>on</tt>", it enforces a flat homogeneous flux distribution based on mean heterogeneous flux, skipping the diffusion solver, regardless of net-current value. |
− | * | + | ***The <tt>''ENF''</tt> parameter should be switched on only in rare cases (with understanding of the implications of the calculation setup). |
− | * | + | |
− | + | *Setup: | |
− | + | **The surface is treated as super-imposed on the geometry, i.e. its parameters (coordinates) are relative to the root universe (see [[Input_syntax_manual#set_root|set root]] option). | |
− | + | ***The surface enclosing the universe can be super-imposed (i.e. not part of the geometry definition), but it must enclose the <u>entire</u> universe. | |
+ | **The symmetry options are used to average out the statistical variation in the ADFs, which might otherwise lead to systematic errors in core calculations. | ||
+ | ***It is important that the options are used only when the geometry has the corresponding symmetry. | ||
+ | **The calculation parameters for the diffusion flux solver can be set using the [[#set dfsol|set dfsol]] option. | ||
+ | |||
+ | *The ADFs are written in: | ||
+ | ** <tt>[input]_res.m</tt> output file: [[Output parameters#Assembly discontinuity factors|homogenized group constants/ADFs]] sub-section | ||
+ | ** <tt>[input].coe</tt> ouput file, via the [[Input syntax manual#set_coefpara|set coefpara]] option: [[Automated_burnup_sequence#Output|automated burnup sequence/coefficient matrix]] output. | ||
=== set alb === | === set alb === | ||
Line 3,156: | Line 3,941: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | * | + | *The option enables the calculation of both total albedos (ratio of currents) and partial albedos (response matrix). |
− | * | + | *Albedos are calculated in the few-group structure for the group constant generation (see [[#set nfg|set nfg]] option). |
− | *The surface is super-imposed on the geometry, i.e. its parameters (coordinates) are relative to the [[Input_syntax_manual#set_root|root | + | *Setup: |
− | *The current direction is given relative to the surface normal vectors | + | **The universe is needed only for labelling the results in the output files. |
− | *The | + | **The surface is treated as super-imposed on the geometry, i.e. its parameters (coordinates) are relative to the root universe (see [[Input_syntax_manual#set_root|set root]] option). |
− | * | + | ***The surface enclosing the universe can be super-imposed (i.e. not part of the geometry definition), but it must enclose the <u>entire</u> universe. |
− | * | + | **The current direction is given relative to the surface normal vectors. |
+ | *The albedo estimates are written in: | ||
+ | ** <tt>[input]_res.m</tt> output file: [[Output parameters#Albedos|homogenized group constants/albedos]] sub-section | ||
+ | ** <tt>[input].coe</tt> ouput file, via the [[Input syntax manual#set_coefpara|set coefpara]] option: [[Automated_burnup_sequence#Output|automated burnup sequence/coefficient matrix]] output. | ||
=== set arr === | === set arr === | ||
Line 3,171: | Line 3,959: | ||
{| | {| | ||
| <tt>''MODEN''</tt> | | <tt>''MODEN''</tt> | ||
− | | : mode for neutrons (0 = no reactions included, 1 = include only reactions that affect neutron balance, 2 = include all reactions) | + | | : mode for neutrons (0 = no reactions included, 1 = include only reactions that affect neutron balance, 2 = include all reactions). (default value: 0) |
|- | |- | ||
| <tt>''MODEG''</tt> | | <tt>''MODEG''</tt> | ||
− | | : mode for photons (0 = no reactions included, 1 = include all reactions) | + | | : mode for photons (0 = no reactions included, 1 = include all reactions). (default value: 0) |
|} | |} | ||
Line 3,180: | Line 3,968: | ||
*Analog reaction rates are calculated by counting sampled events and printed in a separate output file <tt>[input]_arr[bu].m</tt>, where "<tt>bu</tt>" is the burnup step. | *Analog reaction rates are calculated by counting sampled events and printed in a separate output file <tt>[input]_arr[bu].m</tt>, where "<tt>bu</tt>" is the burnup step. | ||
− | * | + | *For more information, see the detailed description on the [[Description of output files#Reaction rate output|reaction rate output file]]. |
=== set ba === | === set ba === | ||
Line 3,193: | Line 3,981: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | *Some burnup applications require separate treatment for isotopes that are used as burnable absorbers but also produced in fission | + | *This input parameter can be used to separate the transmutation chains. |
+ | **Some burnup applications require separate treatment for isotopes that are used as burnable absorbers but also produced in fission. | ||
*Isotope handled as the burnable absorber is created by duplicating the original and renaming it as ''ZAI<sub>n</sub> + 1000''. | *Isotope handled as the burnable absorber is created by duplicating the original and renaming it as ''ZAI<sub>n</sub> + 1000''. | ||
− | *For Gd-155, for example, the fission product isotope would be assigned ZAI 641550 and the burnable absorber ZAI 642550. | + | **For Gd-155, for example, the fission product isotope would be assigned ZAI 641550 and the burnable absorber ZAI 642550. |
− | *The input parameter defines the entire transmutation chain. Listing Gd-isotopes 641540 641550 641560 641570 641580 creates a transmutation path from Gd-154 to Gd-158. Listing only the main absorbers (641550 641570) produces a different result, since the capture products of Gd-155 and Gd-157 are lost. | + | *The input parameter defines the entire transmutation chain. |
+ | **Listing Gd-isotopes 641540 641550 641560 641570 641580 creates a transmutation path from Gd-154 to Gd-158. | ||
+ | **Listing only the main absorbers (641550 641570) produces a different result, since the capture products of Gd-155 and Gd-157 are lost. | ||
=== set bala === | === set bala === | ||
Line 3,205: | Line 3,996: | ||
{| | {| | ||
| <tt>''OPT''</tt> | | <tt>''OPT''</tt> | ||
− | | : probability to store particles in common queue (0 = off, | + | | : probability to store particles in common queue (0 = off, non-zero = on) |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | *Load balancing may improve OpenMP parallel scalability in calculations with significant branching | + | *Load balancing may improve OpenMP parallel scalability in calculations with significant branching. |
− | * | + | **Most typically related to coupled neutron/photon calculations or variance reduction. |
+ | *Default value: | ||
+ | **It is "<tt>on</tt>" with <tt>''OPT''</tt>= 1 with weight-window/variance reduction calculations and dynamic/time-dependent calculation modes. | ||
+ | **Otherwise, it is set "<tt>off</tt>". | ||
+ | **Before version 2.2.0, the default behaviour was always "<tt>off</tt>". | ||
*When this option is set, the random number sequence is no longer preserved. | *When this option is set, the random number sequence is no longer preserved. | ||
Line 3,216: | Line 4,011: | ||
'''set bc''' ''MODE'' | '''set bc''' ''MODE'' | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
'''set bc''' ''MODE ALB'' | '''set bc''' ''MODE ALB'' | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
'''set bc''' ''MODEX MODEY MODEZ'' | '''set bc''' ''MODEX MODEY MODEZ'' | ||
− | Sets the boundary conditions | + | |
+ | '''set bc''' ''MODEX MODEY MODEZ ALB'' | ||
+ | Sets the boundary conditions (BCs). Input values: | ||
{| | {| | ||
+ | | <tt>''MODE''</tt> | ||
+ | | : boundary condition type in all directions | ||
+ | |- | ||
| <tt>''MODEX''</tt> | | <tt>''MODEX''</tt> | ||
− | | : boundary type in x-direction | + | | : boundary condition type in x-direction |
|- | |- | ||
| <tt>''MODEY''</tt> | | <tt>''MODEY''</tt> | ||
− | | : boundary type in y-direction | + | | : boundary condition type in y-direction |
|- | |- | ||
| <tt>''MODEZ''</tt> | | <tt>''MODEZ''</tt> | ||
− | | : boundary type in z-direction | + | | : boundary condition type in z-direction |
|- | |- | ||
+ | | <tt>''ALB''</tt> | ||
+ | | : albedo | ||
|} | |} | ||
− | + | The possible boundary condition types are: | |
− | + | ::{| class="wikitable" style="text-align: left;" | |
− | + | ! Type | |
− | {| | + | ! Description |
− | + | ! Notes | |
− | + | ||
|- | |- | ||
− | | <tt> | + | | <tt>1, black</tt> |
− | | | + | | vacuum boundary condition(s) |
+ | | the particle is killed | ||
|- | |- | ||
− | | <tt> | + | | <tt>2, reflective</tt> |
− | | | + | | repeated (reflective) boundary condition(s) |
+ | | the particle is reflected back into the geometry | ||
+ | |- | ||
+ | | <tt>3, periodic</tt> | ||
+ | | repeated (periodic) boundary condition(s) | ||
+ | | the particle is moved to the opposite side of the geometry | ||
|- | |- | ||
− | |||
− | |||
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | *The boundary conditions can be set | + | *The default boundary condition is vacuum in all directions. |
− | * | + | *Direction-wise boundary conditions: |
− | *Albedo boundary conditions are invoked by multiplying the particle weight with factor <tt>''ALB''</tt> each time a reflective or periodic boundary is hit. | + | **Boundary conditions can be set for all directions at once: <tt>''MODE''</tt>. |
− | *Repeated boundary conditions (reflective or periodic) are based on universe transformations, which limits outer boundary to surfaces that form regular lattices (square and hexagonal prisms, rectangles, cubes and cuboids). | + | **Boundary conditions can be set for x-/y-/z- direction separately: <tt>''MODEX''</tt>, <tt>''MODEY''</tt>, and <tt>''MODEZ''</tt> |
− | * | + | *Boundary conditions can be defined with albedos by adding one additional parameter in the list, <tt>''ALB''</tt>. |
− | *For symmetry | + | **Albedo boundary conditions are invoked by multiplying the particle weight with factor <tt>''ALB''</tt> each time a reflective or periodic boundary is hit. |
− | *For more information, see [[Boundary conditions| | + | *Repeated boundary conditions (reflective or periodic): |
− | + | **They are based on universe transformations, which limits outer boundary to surfaces that form regular lattices (square and hexagonal prisms, rectangles, cubes and cuboids). | |
+ | **They are applied on the first surface of outside cells (see definition of outside cells in the [[#cell (cell definition)|cell card]]) | ||
+ | *For universe symmetry options, see the [[#set usym|set usym]] option. | ||
+ | *For more information, see the detailed description on the [[Boundary conditions|Boundary conditions]]. | ||
=== set blockdt === | === set blockdt === | ||
Line 3,288: | Line 4,081: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | *This option is used to override selection of tracking mode based on the probability threshold (see [[#set dt|set dt]]) in individual materials. | + | *This option is used to override selection of tracking mode based on the probability threshold (see [[#set dt|set dt]] option) in individual materials. |
− | * | + | *The use of delta-tracking can be forced in individual materials using [[#set forcedt|set forcedt]] option. |
*For more information on tracking modes, see the detailed description on [[delta- and surface-tracking]]. | *For more information on tracking modes, see the detailed description on [[delta- and surface-tracking]]. | ||
*''Note to developers: should have different lists for neutrons and photons?'' | *''Note to developers: should have different lists for neutrons and photons?'' | ||
Line 3,304: | Line 4,097: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | |||
− | |||
− | |||
*If the file path contains special characters it is advised to enclose it within quotes. | *If the file path contains special characters it is advised to enclose it within quotes. | ||
*A default directory path can be set by defining environment variable SERPENT_DATA. The code looks for decay data files in this path if not found at the absolute. | *A default directory path can be set by defining environment variable SERPENT_DATA. The code looks for decay data files in this path if not found at the absolute. | ||
− | *See | + | *Isomeric branching data libraries are standard ENDF format<ref name="endf">Trkov, A., Herman, M. and Brown, D. A. ''"ENDF-6 Formats Manual."'' CSEWG Document ENDF-102 / BNL-90365-2009 Rev. 2 [https://www.nndc.bnl.gov/endf-b8.0/endf-manual-viii.0.pdf (2018)]</ref> files containing energy-dependent branching ratios. The data is read from ENDF files 9 and 10. |
− | * | + | *Serpent uses [[Default isomeric branching ratios|constant branching ratios]] by default. |
+ | **The default values can be overridden using the [[#set isobra|set isobra]] option. In which case, the energy-dependent data read from ENDF format files override the constant ratios. | ||
+ | *See a practical example on how to evaluate branching ratios: [[Branching ratio example|example input]]. | ||
+ | **The isomeric branching data library corresponds to the JEFF-3.1 activation file [[File:JEFF-3.1_activation_file.tgz]]. | ||
=== set branchless === | === set branchless === | ||
Line 3,319: | Line 4,112: | ||
{| | {| | ||
| <tt>''OPT''</tt> | | <tt>''OPT''</tt> | ||
− | | : option to switch calculation on (1/yes) or off (0/no). | + | | : option to switch calculation on (1/yes) or off (0/no). The default option is "<tt>off</tt>". |
|- | |- | ||
| <tt>''WGT_LOW''</tt> | | <tt>''WGT_LOW''</tt> | ||
Line 3,330: | Line 4,123: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
*The branchless algorithm suppresses the variability due to the simultaneous propagation of the several branches associated to a fission event | *The branchless algorithm suppresses the variability due to the simultaneous propagation of the several branches associated to a fission event | ||
− | *The branchless method uses analog scattering combined with forced fission so that after each collision, the neutron is either a scattering neutron or a fission neutron. In a non-multiplying method, the branchless method behaves as implicit capture. | + | *The branchless method uses analog scattering combined with forced fission so that after each collision, the neutron is either a scattering neutron or a fission neutron. |
+ | **In a non-multiplying method, the branchless method behaves as implicit capture. | ||
+ | *The branchless method sets the following simulation configuration: reaction sampling ([[#set nphys|set nphys 1 1 1]]), reaction modes ([[#set impl|set impl 0 1 1]]), and population control ([[#set combing|set combing 1]]), overriding any user-defined option. | ||
+ | *The current implementation does not support the use of the branchless collision method combined with the unresolved resonance probability table sampling (see [[#set ures|set ures]] option). | ||
=== set bumode === | === set bumode === | ||
Line 3,340: | Line 4,136: | ||
{| | {| | ||
| <tt>''MODE''</tt> | | <tt>''MODE''</tt> | ||
− | | : burnup calculation mode | + | | : burnup calculation mode (default value: 2 = CRAM) |
|- | |- | ||
| <tt>''ORDER''</tt> | | <tt>''ORDER''</tt> | ||
− | | : CRAM order | + | | : CRAM order (default value: 14 - 14 PFD CRAM) |
|- | |- | ||
| <tt>''SSD''</tt> | | <tt>''SSD''</tt> | ||
− | | : number of substeps for CRAM decay steps (default | + | | : number of substeps for CRAM decay steps (default value: 0 = use TTA) |
|} | |} | ||
The possible settings for mode are: | The possible settings for mode are: | ||
− | {| class="wikitable" style="text-align: left;" | + | ::{| class="wikitable" style="text-align: left;" |
! Mode | ! Mode | ||
! Description | ! Description | ||
Line 3,364: | Line 4,160: | ||
The CRAM order parameter can only be given when choosing the CRAM mode. The possible settings for CRAM order are: | The CRAM order parameter can only be given when choosing the CRAM mode. The possible settings for CRAM order are: | ||
− | {| class="wikitable" style="text-align: left;" | + | ::{| class="wikitable" style="text-align: left;" |
! CRAM order | ! CRAM order | ||
− | |||
| <tt>2</tt> | | <tt>2</tt> | ||
− | |||
| <tt>4</tt> | | <tt>4</tt> | ||
− | |||
| <tt>6</tt> | | <tt>6</tt> | ||
− | |||
| <tt>8</tt> | | <tt>8</tt> | ||
− | |||
| <tt>10</tt> | | <tt>10</tt> | ||
− | |||
| <tt>12</tt> | | <tt>12</tt> | ||
− | |||
| <tt>14</tt> | | <tt>14</tt> | ||
− | |||
| <tt>16</tt> | | <tt>16</tt> | ||
− | |||
| <tt>-16</tt> | | <tt>-16</tt> | ||
− | |||
| <tt>-48</tt> | | <tt>-48</tt> | ||
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | * | + | *Positive values refer to PFD form of CRAM. Negative values of CRAM order mean using IPF form of CRAM with order of the absolute value of the parameter. |
− | + | *Decay calculations (see [[#dep (depletion history)|dep (depletion history)]]) and burnup calculations with very low flux are always calculated with TTA disregarding this input before version 2.1.32. | |
− | + | **The latter, very low flux condition, only applies to calculations not involving continuous reprocessing. | |
− | + | *Positive values of <tt>''SSD''</tt> enforce usage of CRAM with given number of substeps. A zero value of <tt>''SSD''</tt> enforces usage of TTA. | |
− | *Decay calculations (see [[#dep (depletion history)|dep (depletion history)]]) and burnup calculations with very low flux are always calculated with TTA disregarding this input before version 2.1.32. The latter, very low flux condition, only applies to calculations not involving continuous reprocessing. | + | |
− | *Positive values of <tt>''SSD''</tt> enforce usage of CRAM with given number of substeps. | + | |
*The Serpent 1 <tt>''MODE''</tt> 3, a variation TTA method, in which cyclic transmutation chains are handled by inducing small variations in the coefficients instead of solving the extended TTA equations, is overwritten by the standard TTA method <tt>''MODE''</tt> 1. | *The Serpent 1 <tt>''MODE''</tt> 3, a variation TTA method, in which cyclic transmutation chains are handled by inducing small variations in the coefficients instead of solving the extended TTA equations, is overwritten by the standard TTA method <tt>''MODE''</tt> 1. | ||
− | |||
=== set bunorm === | === set bunorm === | ||
Line 3,406: | Line 4,189: | ||
{| | {| | ||
| <tt>''NORM''</tt> | | <tt>''NORM''</tt> | ||
− | | : burnup calculation normalization mode (1 = all materials, 2 = burnable materials, 3 = non-burnable materials) | + | | : burnup calculation normalization mode (1 = all materials, 2 = burnable materials, 3 = non-burnable materials). (default value: 1) |
|} | |} | ||
− | |||
− | |||
− | |||
=== set ccmaxiter === | === set ccmaxiter === | ||
Line 3,419: | Line 4,199: | ||
{| | {| | ||
| <tt>''NITER''</tt> | | <tt>''NITER''</tt> | ||
− | | : number of iterations | + | | : number of iterations (default value: 1 = no iteration) |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | |||
*The iteration is stopped when either the maximum number of iterations or the maximum active neutron population (set with [[#set ccmaxpop|set ccmaxpop]]) has been simulated. | *The iteration is stopped when either the maximum number of iterations or the maximum active neutron population (set with [[#set ccmaxpop|set ccmaxpop]]) has been simulated. | ||
− | * | + | *For more information, see the detailed description on [[Coupled multi-physics calculations|Couple multi-physics calculations]]. |
=== set ccmaxpop === | === set ccmaxpop === | ||
Line 3,435: | Line 4,214: | ||
{| | {| | ||
| <tt>''CPOP''</tt> | | <tt>''CPOP''</tt> | ||
− | | : total active population to simulate | + | | : total active population to simulate (default value: [[Definitions, units and constants#Constants|INFTY]]/1E6) |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | |||
*The iteration is stopped when either the maximum number of iterations (set with [[#set ccmaxiter|set ccmaxiter]]) or the maximum active neutron population has been simulated. | *The iteration is stopped when either the maximum number of iterations (set with [[#set ccmaxiter|set ccmaxiter]]) or the maximum active neutron population has been simulated. | ||
*Only the population simulated during active cycles is included in this amount. | *Only the population simulated during active cycles is included in this amount. | ||
*This is mostly useful if the neutron population per iteration is not constant. | *This is mostly useful if the neutron population per iteration is not constant. | ||
− | * | + | *For more information, see the detailed description on [[Coupled multi-physics calculations|Couple multi-physics calculations]]. |
=== set cdop === | === set cdop === | ||
Line 3,453: | Line 4,231: | ||
{| | {| | ||
| <tt>''OPT''</tt> | | <tt>''OPT''</tt> | ||
− | | : option to set Doppler broadening method off (0/no) or on (1/yes). The default option is on. | + | | : option to set Doppler broadening method off (0/no) or on (1/yes). The default option is "<tt>on</tt>". |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | *If the Doppler broadening method is switched off, the incoherent scattering function approximation is used for calculating the energy. | + | *If the Doppler broadening method is switched "<tt>off</tt>", the incoherent scattering function approximation is used for calculating the energy. |
*In both cases, the direction of the photon is calculated using the incoherent scattering function. | *In both cases, the direction of the photon is calculated using the incoherent scattering function. | ||
+ | *The photon transport physics model is described in a related paper<ref name="photon">Kaltiaisenaho, T. ''"Photon transport physics in Serpent 2 Monte Carlo code."'' Comp. Phys. Comm., [https://doi.org/10.1016/j.cpc.2020.107143 ''252'' (2020) 107143.]</ref> | ||
=== set cea === | === set cea === | ||
Line 3,467: | Line 4,246: | ||
{| | {| | ||
| <tt>''OPT''</tt> | | <tt>''OPT''</tt> | ||
− | | : option to set the Compton electron angular distribution model off (0/no) or on (1/yes). The default option is on. | + | | : option to set the Compton electron angular distribution model off (0/no) or on (1/yes). The default option is "<tt>on</tt>". |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
*Electron travels in the direction of the momentum transfer vector. This is equal to the free-electron scattering angle when Doppler broadening is not used. | *Electron travels in the direction of the momentum transfer vector. This is equal to the free-electron scattering angle when Doppler broadening is not used. | ||
+ | *The photon transport physics model is described in a related paper<ref name="photon" /> | ||
=== set cfe === | === set cfe === | ||
Line 3,480: | Line 4,260: | ||
{| | {| | ||
| <tt>''LN''</tt> | | <tt>''LN''</tt> | ||
− | | : minimum mean distance for scoring the CFE for neutrons | + | | : minimum mean distance for scoring the CFE for neutrons [in cm] (default value: 20.0) |
|- | |- | ||
| <tt>''TN''</tt> | | <tt>''TN''</tt> | ||
− | | : minimum mean time interval for scoring the CFE for neutrons | + | | : minimum mean time interval for scoring the CFE for neutrons [in s] |
|- | |- | ||
| <tt>''LG''</tt> | | <tt>''LG''</tt> | ||
− | | : minimum mean distance for scoring the CFE for photons | + | | : minimum mean distance for scoring the CFE for photons [in cm] (default value: 20.0) |
|- | |- | ||
| <tt>''TG''</tt> | | <tt>''TG''</tt> | ||
− | | : minimum mean time interval for scoring the CFE for photons | + | | : minimum mean time interval for scoring the CFE for photons [in s] |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | *The use of delta-tracking necessitates the use of CFE for scoring the integral reaction rates. The scoring is based on both real and virtual collision to improve the statistics in low density regions (and short time intervals). | + | *The use of delta-tracking necessitates the use of CFE for scoring the integral reaction rates. |
− | *The minimum mean distance is the statistical mean-free-path (mfp) of collisions that contribute to the CFE. Collisions are more frequent if the physical mfp is shorter. | + | **The scoring is based on both real and virtual collision to improve the statistics in low density regions (and short time intervals). |
+ | *The minimum mean distance is the statistical mean-free-path (mfp) of collisions that contribute to the CFE. | ||
+ | **Collisions are more frequent if the physical mfp is shorter. | ||
*In time-dependent simulations it may be more convenient to define the minimum mean time between two collisions, to get sufficient statistics for short time bins. | *In time-dependent simulations it may be more convenient to define the minimum mean time between two collisions, to get sufficient statistics for short time bins. | ||
− | * | + | *Adjusting the distance affects both statistics and running time, but it should be noted that <u>no studies have been performed on what the optimal value should be</u>. |
− | *Only one criterion can be provided for each particle type. If distance is given, time must be set to -1 and vice versa. | + | *Only one criterion can be provided for each particle type. |
+ | **If distance is given, time must be set to "<tt>-1</tt>" and vice versa. | ||
*For more information on tracking modes and CFE, see the detailed descriptions on [[delta- and surface-tracking]] and [[Result estimators#Implicit estimators|result estimators]]. | *For more information on tracking modes and CFE, see the detailed descriptions on [[delta- and surface-tracking]] and [[Result estimators#Implicit estimators|result estimators]]. | ||
− | *The collision flux estimator | + | *The collision flux estimator methodology is described in a related paper.<ref name="cfe">Leppänen, J. |
''"On the use of delta-tracking and the collision flux estimator in the Serpent 2 Monte Carlo particle transport code."'' Ann. Nucl. Energy [http://www.sciencedirect.com/science/article/pii/S0306454916311367 '''105''' (2017) 161-167].</ref> | ''"On the use of delta-tracking and the collision flux estimator in the Serpent 2 Monte Carlo particle transport code."'' Ann. Nucl. Energy [http://www.sciencedirect.com/science/article/pii/S0306454916311367 '''105''' (2017) 161-167].</ref> | ||
*In version 2.1.27 and earlier the name of this input option was "set minxs". | *In version 2.1.27 and earlier the name of this input option was "set minxs". | ||
Line 3,514: | Line 4,297: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | + | ||
− | * | + | *Methodology: |
− | * | + | **The CMM diffusion coefficients and transport cross sections are reasonable only when they are calculated over entire geometry: |
− | *CMM diffusion coefficients and transport cross sections are reasonable only when they are calculated over entire geometry | + | ***The homogenized region covers the entire geometry and is surrounded by periodic or reflective boundary conditions. |
− | **This means that e.g. pin cell diffusion coefficients can not be calculated from a 2D fuel assembly calculation. | + | ***This means that e.g. pin cell diffusion coefficients can not be calculated from a 2D fuel assembly calculation. |
− | **One may try to approximate the CMM | + | **The CMM methodology was revised in version 2.1.31 so that the calculated values may be different than with previous versions. |
− | * | + | **One may try to approximate the CMM estimates with the transport correction for hydrogen for light water reactor applications (see [[#set trc|set trc]] option). |
+ | *Setup: | ||
+ | **CMM diffusion coefficients and transport cross sections can be calculated also when using implicit capture reactions (see [[#set_impl|set impl]] option), from version 2.1.31 and on. | ||
+ | **The calculation of CMM estimates (diffusion coefficients and transport cross sections) might take considerable time. Switch "<tt>off</tt>" the evaluation if the data is not needed. | ||
+ | **The use of private results array may be recommended when calculating CMM estimates (see [[#set_shbuf|set shbuf]] option). | ||
+ | *The CMM diffusion coefficients <tt>CMM_DIFFCOEF</tt> and transport cross sections <tt>CMM_TRANSPXS</tt> estimates are written in: | ||
+ | ** <tt>[input]_res.m</tt> output file: [[Output parameters#Homogenized group constants|homogenized group constants]] section - diffusion parameters: for infinite spectrum and critical spectrum. | ||
+ | ** <tt>[input].coe</tt> ouput file, via the [[Input syntax manual#set_coefpara|set coefpara]] option: [[Automated_burnup_sequence#Output|automated burnup sequence/coefficient matrix]] output. | ||
+ | *The cumulative migration method (CMM) is described in related papers<ref>Liu, Z., Smith, K., Forget, B. and Ortensi, J. ''"Cumulative migration method for computing rigorous diffusion coefficients and transport cross sections from Monte Carlo."'' Ann. Nuc. Energy, [https://doi.org/10.1016/j.anucene.2017.10.039 '''112''' (2016) 126-136]</ref><ref>Liu, Z., Smith, K. and Forget, B. ''"Group-wise Tally Scheme of Incremental Migration Area for Cumulative Migration Method."'' In Proceedings of the PHYSOR 2018 (2018) 2512-2523</ref>. | ||
=== set coefpara === | === set coefpara === | ||
Line 3,529: | Line 4,320: | ||
{| | {| | ||
| <tt>''FMT''</tt> | | <tt>''FMT''</tt> | ||
− | | : output format, currently used for including or excluding statistical errors (0 = not included, 1 = included) | + | | : output format, currently used for including or excluding statistical errors (0 = not included, 1 = included). (default value: 0) |
|- | |- | ||
| <tt>''PARAM<sub>n</sub>''</tt> | | <tt>''PARAM<sub>n</sub>''</tt> | ||
Line 3,536: | Line 4,327: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | + | *List of parameters or detectors to include: | |
+ | **The available parameters are listed under [[Output parameters#Homogenized group constants|homogenized group constants]] in the description of the <tt>[input]_res.m</tt> output file. | ||
+ | **Detectors are identified by the name assigned to them in the [[#det (detector definition)|det card]]. | ||
*The group constant output file <tt>[input].coe</tt> is produced when the [[automated burnup sequence]] is invoked. | *The group constant output file <tt>[input].coe</tt> is produced when the [[automated burnup sequence]] is invoked. | ||
− | |||
− | |||
=== set combing === | === set combing === | ||
Line 3,548: | Line 4,339: | ||
{| | {| | ||
| <tt>''MODE''</tt> | | <tt>''MODE''</tt> | ||
− | | : combing population-control mode (0 = none, 1 = weight-based, 2 = emission-based) | + | | : combing population-control mode (0 = none, 1 = weight-based, 2 = emission-based). (default value: 0) |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | *The combing method can achieve variance reduction and save computer time by keeping the population size approximately constant over time steps. In super-critical systems, it prevents the population from growing without bound | + | *The combing method can achieve variance reduction and save computer time by keeping the population size approximately constant over time steps. |
+ | **In super-critical systems, it prevents the population from growing without bound. | ||
+ | **In sub-critical systems, it prevents the population from dying. | ||
+ | **In critical systems, it avoids the divergence of the variance of the population due to fluctuations of fission chains. | ||
=== set comfile === | === set comfile === | ||
Line 3,571: | Line 4,365: | ||
*Setting up a communication mode will enable the coupled calculation mode. | *Setting up a communication mode will enable the coupled calculation mode. | ||
*The communication options [[#set comfile|set comfile]], [[#set ppid|set ppid]] and [[#set pport|set pport]] are mutually exclusive, aka, multiple signalling modes are not allowed. | *The communication options [[#set comfile|set comfile]], [[#set ppid|set ppid]] and [[#set pport|set pport]] are mutually exclusive, aka, multiple signalling modes are not allowed. | ||
− | *For more information see | + | *For more information, see the detailed description on [[Coupled_multi-physics_calculations#External_coupling|External coupling]] |
=== set confi === | === set confi === | ||
Line 3,580: | Line 4,374: | ||
{| | {| | ||
| <tt>''OPT''</tt> | | <tt>''OPT''</tt> | ||
− | | : option to set confidentiality flag on (1/yes) or off (0/no) | + | | : option to set confidentiality flag on (1/yes) or off (0/no). The default option is "<tt>off</tt>" |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | *This option can be used to label calculations as confidential. If the option is set, text "(CONFIDENTIAL)" is printed in the run-time output next to the [[#set title|calculation title]] and the value of variable CONFIDENTIAL_DATA in the <tt>[input]_res.m</tt> output file is set to 1. | + | *This option can be used to label calculations as confidential. If the option is set, text "(CONFIDENTIAL)" is printed in the run-time output next to the [[#set title|calculation title]] and the value of variable CONFIDENTIAL_DATA in the <tt>[input]_res.m</tt> output file is set to "1". |
=== set coverxlib === | === set coverxlib === | ||
Line 3,594: | Line 4,388: | ||
{| | {| | ||
| <tt>''LIB<sub>n</sub>''</tt> | | <tt>''LIB<sub>n</sub>''</tt> | ||
− | | : file paths to multi-group covariance data files in the COVERX format (ASCII or binary) | + | | : file paths to multi-group covariance data files in the COVERX format<ref name="coverx">Wieselquist, W. A. and Lefebvre, R. A (ed.), ''"SCALE 6.3.1 User Manual: Sensitivity and Uncertainty Analysis - Appendix 6.3.4.1.6. COVERX format"'', ORNL/TM-SCALE-6.3.1, UT-Battelle, LLC, Oak Ridge National Laboratory, Oak Ridge, TN [https://scale-manual.ornl.gov/tsunami-ip-appAB.html#coverx-format (2023)]</ref> (ASCII or binary) |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
+ | *It enables first-order uncertainty propagation by collapsing the covariance data with the evaluated sensitivities. | ||
+ | **It applies the <u>Sandwich rule</u>: <math>\mathbf{Cov}^R_X \approx ({\overline{\mathbf{S}}}^R_X)^T {\overline{\overline{\mathbf{Cov}}}}^R_{X,X} \overline{\mathbf{S}}^R_X</math> | ||
− | + | :: where: <math>{\overline{\mathbf{S}}}^R_X \in \R^{N_g \times 1} </math> is the sensitivity vector containing the group sensitivities | |
+ | ::::<math>{\overline{\overline{\mathbf{Cov}}}}^R_{X,X} \in \R^{N_g \times N_g}</math> is the covariance matrix containing the group covariances | ||
+ | *The methodology is described in a related report<ref name="UncReport18">Valtavirta, V. ''"Nuclear data uncertainty propagation to Serpent generated group and time constants"'', Research report VTT-R-04681-18 [http://montecarlo.vtt.fi/download/VTT-R-04681-18_web.pdf (2018)].</ref>. | ||
+ | *It requires setting the sensitivity calculation parameters. For more information, see the detailed description on [[Sensitivity calculations|sensitivity calculations]]. | ||
=== set covlib === | === set covlib === | ||
Line 3,609: | Line 4,408: | ||
| <tt>''LIB<sub>n</sub>''</tt> | | <tt>''LIB<sub>n</sub>''</tt> | ||
| : file paths to multi-group covariance data files in the plain ASCII format (ASCII or binary) | | : file paths to multi-group covariance data files in the plain ASCII format (ASCII or binary) | ||
+ | |} | ||
+ | |||
+ | The <u>syntax of the file</u> containing the covariance data is: | ||
+ | |||
+ | ::{| class="toccolours" style="text-align: left;" | ||
+ | |- | ||
+ | | ''NG'' ''E<sub>1</sub>'' ... ''E<sub>NG+1</sub>'' ''NM'' | ||
+ | |- | ||
+ | | ''ZAI<sub>1,1</sub>'' ''MT<sub>1,1</sub>'' ''ZAI<sub>1,2</sub>'' ''MT<sub>1,2</sub>'' | ||
+ | |- | ||
+ | | ''COV<sub>1,1,1</sub>'' ... ''COV<sub>1,NG,NG</sub>'' | ||
+ | |- | ||
+ | |... | ||
+ | |- | ||
+ | | ''ZAI<sub>NM,1</sub>'' ''MT<sub>NM,1</sub>'' ''ZAI<sub>NM,2</sub>'' ''MT<sub>NM,2</sub>'' | ||
+ | |- | ||
+ | | ''COV<sub>NM,1,1</sub>'' ... ''COV<sub>NM,NG,NG</sub>'' | ||
+ | |- | ||
+ | |} | ||
+ | |||
+ | where: | ||
+ | |||
+ | {| | ||
+ | | <tt>''NG''</tt> | ||
+ | |: number of neutron energy groups | ||
+ | |- | ||
+ | | <tt>''E<sub>g</sub>''</tt> | ||
+ | |: energy grid boundaries [in MeV] | ||
+ | |- | ||
+ | | <tt>''NM''</tt> | ||
+ | |: number of covariance matrixes | ||
+ | |- | ||
+ | | <tt>''ZAI<sub>m,n</sub>'', ''MT<sub>m,n</sub>''</tt> | ||
+ | |: 2 × nuclide ([[Definitions, units and constants#definitions|ZAI]])-reaction ([[ENDF reaction MT's and macroscopic reaction numbers#ENDF Reaction MT's|ENDF reaction MT]]) pairs defining the ''m''-th covariance matrix | ||
+ | |- | ||
+ | | <tt>''COV''<sub>m,g,g</sub>''</tt> | ||
+ | |: ''NG'' × ''NG'' covariance data corresponding to the ''m''-th matrix | ||
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
+ | *It enables first-order uncertainty propagation by collapsing the covariance data with the evaluated sensitivities. | ||
+ | **It applies the <u>Sandwich rule</u>: <math>\mathbf{Cov}^R_X \approx ({\overline{\mathbf{S}}}^R_X)^T {\overline{\overline{\mathbf{Cov}}}}^R_{X,X} \overline{\mathbf{S}}^R_X</math> | ||
− | + | :: where: <math>{\overline{\mathbf{S}}}^R_X \in \R^{N_g \times 1} </math> is the sensitivity vector containing the group sensitivities | |
+ | ::::<math>{\overline{\overline{\mathbf{Cov}}}}^R_{X,X} \in \R^{N_g \times N_g}</math> is the covariance matrix containing the group covariances | ||
+ | *The methodology is described in a related report<ref name="UncReport18">Valtavirta, V. ''"Nuclear data uncertainty propagation to Serpent generated group and time constants"'', Research report VTT-R-04681-18 [http://montecarlo.vtt.fi/download/VTT-R-04681-18_web.pdf (2018)].</ref>. | ||
+ | *It requires setting the sensitivity calculation parameters. For more information, see the detailed description on [[Sensitivity calculations|sensitivity calculations]]. | ||
=== set cpd === | === set cpd === | ||
Line 3,622: | Line 4,463: | ||
{| | {| | ||
| <tt>''DEPTH''</tt> | | <tt>''DEPTH''</tt> | ||
− | | : The number of | + | | : The number of lattice-levels included. |
|- | |- | ||
| <tt>''N<sub>Z</sub>''</tt> | | <tt>''N<sub>Z</sub>''</tt> | ||
− | | : Number of equal sized axial bins into which the lattices are divided | + | | : Number of equal sized axial bins into which the lattices are divided (default value: 1) |
|- | |- | ||
| <tt>''Z<sub>MIN</sub>''</tt> | | <tt>''Z<sub>MIN</sub>''</tt> | ||
− | | : Minimum z-coordinate for the axial division | + | | : Minimum z-coordinate for the axial division [in cm] (default value: [[Definitions, units and constants#Constants|-INFTY]]) |
|- | |- | ||
| <tt>''Z<sub>MAX</sub>''</tt> | | <tt>''Z<sub>MAX</sub>''</tt> | ||
− | | : Maximum z-coordinate for the axial division | + | | : Maximum z-coordinate for the axial division [in cm] (default value: [[Definitions, units and constants#Constants|INFTY]]) |
|- | |- | ||
| <tt>''LVL1''</tt> | | <tt>''LVL1''</tt> | ||
Line 3,641: | Line 4,482: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | * The | + | *The interpretation of the number of levels included is as follows: |
+ | ** <tt>''DEPTH''</tt> 1: includes the first level from the root universe, which "usually" corresponds to the assembly-wise distribution. | ||
+ | ** <tt>''DEPTH''</tt> 2: includes the first two levels from the root universe, which "usually" corresponds to the assembly- and pin-wise distributions. | ||
=== set cpop === | === set cpop === | ||
'''set cpop''' ''NPG'' ''NGEN'' ''NSKIP'' [ ''NSKIP2'' ] | '''set cpop''' ''NPG'' ''NGEN'' ''NSKIP'' [ ''NSKIP2'' ] | ||
− | Sets parameters for simulated neutron population for corrector neutron transport solutions in burnup calculation. Typically used with the [[Stochastic Implicit Euler burnup scheme|SIE burnup scheme]]. Input values | + | Sets parameters for simulated neutron population for corrector neutron transport solutions in burnup calculation. Typically used with the [[Stochastic Implicit Euler burnup scheme|SIE burnup scheme]]. Input values: |
{| | {| | ||
Line 3,679: | Line 4,522: | ||
*Only source points from active cycles are included. | *Only source points from active cycles are included. | ||
+ | *From version 2.2.1 and on, multi-step depletion source files can be generated <tt>[''FILE'']_[bu]</tt>, where "<tt>bu</tt>" is the burnup step. Otherwise, simply, <tt>[''FILE'']</tt>. | ||
=== set dataout === | === set dataout === | ||
'''set dataout''' ''TABLE_LIST'' | '''set dataout''' ''TABLE_LIST'' | ||
− | Defines the tables included in the nuclear and material data file <tt>[input].out | + | Defines the tables included in the nuclear and material data file <tt>[input].out</tt>. Input values: |
{| | {| | ||
| <tt>''TABLE_LIST''</tt> | | <tt>''TABLE_LIST''</tt> | ||
− | | : list of tables | + | | : list of tables (default value: <tt>all/0</tt>) |
+ | |} | ||
+ | |||
+ | Possible list of tables: | ||
+ | Possible key-words/variables are: | ||
+ | ::{| class="wikitable" style="text-align: left;" | ||
+ | ! Key-word | ||
+ | ! Table ID | ||
+ | ! Description | ||
+ | |- | ||
+ | | <tt>0, all</tt> | ||
+ | | | ||
+ | | include all available tables | ||
+ | |- | ||
+ | | <tt>1, nuc_summary</tt> | ||
+ | | Table 1: Summary of nuclide data | ||
+ | | | ||
+ | |- | ||
+ | | <tt>2, nuc_readec</tt> | ||
+ | | Table 2: Reaction and decay data | ||
+ | | | ||
+ | |- | ||
+ | | <tt>3, nuc_nfy</tt> | ||
+ | | Table 3: Fission yield data | ||
+ | | only in burnp mode | ||
+ | |- | ||
+ | | <tt>4, nuc_lostpath</tt> | ||
+ | | Table 4: Lost transmutation paths | ||
+ | | only in burnup mode | ||
+ | |- | ||
+ | | <tt>5, mat_summary</tt> | ||
+ | | Table 1: Summary of material compositions | ||
+ | | | ||
+ | |- | ||
+ | | <tt>8, allnuc</tt> | ||
+ | | | ||
+ | | (nuclide) Tables 1-4 | ||
+ | |- | ||
+ | | <tt>9, allmat</tt> | ||
+ | | | ||
+ | | (material) Tables 1 | ||
+ | |- | ||
+ | | <tt>-1</tt> | ||
+ | | | ||
+ | | omit the <tt>[input].out</tt> file | ||
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | *The file | + | *The output file data is divided into two sections: nuclear data (Tables 1-4) and material data (Table 1). Respectively, they include all the nuclides and their reactions as they are read from the nuclear data libraries, and the material data includes isotopic compositions and densities, as well as volumes and masses if available. |
− | + | *For more information, see detailed description of the [[Description of output files#Nuclide and material data output|nuclear and material data output]]. | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
=== set dbrc === | === set dbrc === | ||
Line 3,708: | Line 4,589: | ||
{| | {| | ||
| <tt>''E<sub>min</sub>''</tt> | | <tt>''E<sub>min</sub>''</tt> | ||
− | | : Minimum energy for DBRC | + | | : Minimum energy for DBRC [in MeV] |
|- | |- | ||
| <tt>''E<sub>max</sub>''</tt> | | <tt>''E<sub>max</sub>''</tt> | ||
− | | : Maximum energy for DBRC | + | | : Maximum energy for DBRC [in MeV] |
|- | |- | ||
| <tt>''NUC<sub>n</sub>''</tt> | | <tt>''NUC<sub>n</sub>''</tt> | ||
− | | : | + | | : zero-kelvin nuclide identifiers for which to apply DBRC (e.g. "92238.00c") |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | |||
*Use of DBRC requires 0 K cross section data. | *Use of DBRC requires 0 K cross section data. | ||
*See also Section 5.6 of [http://montecarlo.vtt.fi/download/Serpent_manual.pdf Serpent 1 User Manual]. | *See also Section 5.6 of [http://montecarlo.vtt.fi/download/Serpent_manual.pdf Serpent 1 User Manual]. | ||
Line 3,726: | Line 4,606: | ||
'''set dd''' ''MODE'' [ ''X<sub>0</sub>'' ''Y<sub>0</sub>'' ''α<sub>0</sub>'' ] | '''set dd''' ''MODE'' [ ''X<sub>0</sub>'' ''Y<sub>0</sub>'' ''α<sub>0</sub>'' ] | ||
− | Invokes domain decomposition. Input values | + | Invokes domain decomposition. Input values: |
{| | {| | ||
| <tt>''MODE''</tt> | | <tt>''MODE''</tt> | ||
− | | : decomposition mode (0 | + | | : decomposition mode (default value: 0) |
|- | |- | ||
| <tt>''X<sub>0</sub>''</tt> | | <tt>''X<sub>0</sub>''</tt> | ||
− | | x-coordinate of the domain decomposition origin ( | + | | : x-coordinate of the domain decomposition origin (centre of the radial division, initial position of the angular division) [in cm] (default value: 0.0) |
|- | |- | ||
| <tt>''Y<sub>0</sub>''</tt> | | <tt>''Y<sub>0</sub>''</tt> | ||
− | | y-coordinate of the domain decomposition origin ( | + | | : y-coordinate of the domain decomposition origin (centre of the radial division, initial position of the angular division) [in cm] (default value: 0.0) |
|- | |- | ||
| <tt>''α<sub>0</sub>''</tt> | | <tt>''α<sub>0</sub>''</tt> | ||
− | | angular position of the domain decomposition origin ( | + | | : angular position of the domain decomposition origin [in degrees] (default value: 0.0) |
+ | |} | ||
+ | |||
+ | The possible modes are: | ||
+ | |||
+ | ::{| class="wikitable" style="text-align: left;" | ||
+ | ! Mode | ||
+ | ! Description | ||
+ | ! Notes | ||
+ | |- | ||
+ | | <tt>0</tt> | ||
+ | | none | ||
+ | | | ||
+ | |- | ||
+ | | <tt>1</tt> | ||
+ | | depletion zone indexing-based decomposition | ||
+ | | not recommended | ||
+ | |- | ||
+ | | <tt>2</tt> | ||
+ | | sector-based decomposition | ||
+ | | <tt>''X<sub>0</sub>''</tt>, <tt>''Y<sub>0</sub>''</tt> and <tt>''α<sub>0</sub>''</tt> are available | ||
+ | |- | ||
+ | | <tt>3</tt> | ||
+ | | sector-based + central division decomposition | ||
+ | | <tt>''X<sub>0</sub>''</tt>, <tt>''Y<sub>0</sub>''</tt> and <tt>''α<sub>0</sub>''</tt> are available, only applicable if MPI-tasks > 4 | ||
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
*Domain decomposition works in MPI mode by separating burnable materials into different parallel tasks. | *Domain decomposition works in MPI mode by separating burnable materials into different parallel tasks. | ||
− | * | + | *The number of domains is given by the number of MPI tasks. |
− | *Only burnable materials separated into depletion zones using the | + | *Only burnable materials separated into depletion zones using the '''sep''' entry in the [[#div|div card]] are decomposed |
− | + | *Decomposed materials are plotted in domain-specific colors (unless the '''rgb''' entry in the [[#mat (material definition)|mat card]] is used) | |
− | + | *The domain decomposition methodology is described in a related paper<ref name="dd">Garcia, M., Leppänen, J. and Sanchez-Espinoza, V. ''"A Collision-based Domain Decomposition scheme for large-scale depletion with the Serpent 2 Monte Carlo code."'' Ann. Nucl. Energy, [https://doi.org/10.1016/j.anucene.2020.108026 '''152''' (2021) 108026].</ref>. | |
− | + | *For more information, see the detail description and practical example on the [[Domain decomposition|Domain decomposition]]. | |
− | *Decomposed materials are plotted in domain-specific colors (unless the '''rgb''' entry in the [[#mat (material definition)| | + | |
− | * | + | |
=== set declib === | === set declib === | ||
Line 3,764: | Line 4,666: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | *Decay libraries are standard ENDF format files containing decay data. | + | *Decay libraries are standard ENDF format<ref name="endf" /> files containing decay data. |
*If the file path contains special characters it is advised to enclose it within quotes. | *If the file path contains special characters it is advised to enclose it within quotes. | ||
*A default directory path can be set by defining environment variable <tt>SERPENT_DATA</tt>. The code looks for decay data files in this path if not found at the absolute. | *A default directory path can be set by defining environment variable <tt>SERPENT_DATA</tt>. The code looks for decay data files in this path if not found at the absolute. | ||
− | *From version 2.2.0 and on, a default decay data library directory file can be set by defining environment variable <tt>SERPENT_DECLIB</tt>. This file will be used if no other path is given with '''set declib'''. | + | *From version 2.2.0 and on, a default decay data library directory file can be set by defining environment variable <tt>SERPENT_DECLIB</tt>. |
+ | **This file will be used if no other path is given with '''set declib'''. | ||
=== set decomp === | === set decomp === | ||
Line 3,799: | Line 4,702: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | + | * Default values: | |
− | * | + | ** Criticality source mode: the delayed neutron emission is "<tt>on</tt>" |
− | *In time-dependent calculations, driven by the [[#set dynsrc|set dynsrc]] option, precursor based delayed neutron emission is included in the calculation | + | ** External (static/dynamic) source mode: the delayed neutron emission is "<tt>off</tt>" |
+ | *In time-dependent calculations, driven by the [[#set dynsrc|set dynsrc]] option, precursor based delayed neutron emission is included in the calculation | ||
+ | ** "<tt>off</tt>" at fission, but "<tt>on</tt>" at delayed nubar in total nubar. | ||
*See separate description of [[physics options in Serpent]] for differences to other codes. | *See separate description of [[physics options in Serpent]] for differences to other codes. | ||
Line 3,807: | Line 4,712: | ||
'''set depmtx''' ''MODE'' | '''set depmtx''' ''MODE'' | ||
− | Print burnup matrixes to <tt>[input]_depmtx_[mat]_[bu]_[ss].m</tt> file during burnup calculation, where "<tt>bu</tt>" is the burnup step and "<tt>ss</tt>" is the substep. | + | Print burnup matrixes to <tt>[input]_depmtx_[mat]_[bu]_[ss].m</tt> file during burnup calculation, where "<tt>bu</tt>" is the burnup step and "<tt>ss</tt>" is the substep. Input values: |
{| | {| | ||
| <tt>''MODE''</tt> | | <tt>''MODE''</tt> | ||
− | | : | + | | : option to switch on (1/yes) or off (0/no) the printing of burnup matrixes. The default value is "<tt>off</tt>" |
|} | |} | ||
Line 3,825: | Line 4,730: | ||
{| | {| | ||
| <tt>''MODE''</tt> | | <tt>''MODE''</tt> | ||
− | | : value indicating, which materials to output to the <tt>[input]_dep.m</tt> file (1 = only partials, 2 = only parents, 3 = both) | + | | : value indicating, which materials to output to the <tt>[input]_dep.m</tt> file (1 = only partials, 2 = only parents, 3 = both). (default value: 2) |
|- | |- | ||
|<tt>''STEP''</tt> | |<tt>''STEP''</tt> | ||
− | | : value indicating the print-out interval of the <tt>[input]_dep.m</tt> file (0 = final step, 1 = all steps, 2 =none) | + | | : value indicating the print-out interval of the <tt>[input]_dep.m</tt> file (0 = final step, 1 = all steps, 2 =none). (default value: 1) |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
*Parent materials refer to materials defined by [[#mat (material definition)|mat cards]], and partials to depletion zones created automatically using the [[#div (divisor definition)|div card]]. | *Parent materials refer to materials defined by [[#mat (material definition)|mat cards]], and partials to depletion zones created automatically using the [[#div (divisor definition)|div card]]. | ||
− | + | *Print-out interval step option 2, no <tt>[input]_dep.m</tt> generation, can be combined with post-processing re-depletion: [[Installing and running Serpent#Running Serpent|<tt>''-rdep''</tt>]] command line option. | |
− | *Print-out interval step option 2, no <tt>[input]_dep.m</tt> generation, can be combined with post-processing re-depletion: | + | *Combined with the domain decomposition feature ([[#set dd|set dd]] option): |
− | * | + | **If the mode is different from 2, it generates multiple depletion files which are named adding <tt>_dd[mpiid]</tt> (domain decomposition identifier) to the standard file name. |
+ | **Each of them contains the partial materials information of the given domain/MPI task. | ||
=== set deppara === | === set deppara === | ||
'''set deppara''' ''PARAM_LIST'' | '''set deppara''' ''PARAM_LIST'' | ||
− | Defines the variables included in the depletion output file <tt>[input]_dep.m</tt>. Input values: | + | Defines the material- and isotopic-wise variables included in the depletion output file <tt>[input]_dep.m</tt>. Input values: |
{| | {| | ||
| <tt>''PARAM_LIST''</tt> | | <tt>''PARAM_LIST''</tt> | ||
− | | : list of variables | + | | : list of variables (default value: "<tt>all</tt>") |
+ | |} | ||
+ | |||
+ | Possible key-words/variables are: | ||
+ | ::{| class="wikitable" style="text-align: left;" | ||
+ | ! Key-word | ||
+ | ! Quantity | ||
+ | ! Output ID | ||
+ | ! Description | ||
+ | |- | ||
+ | | <tt>atom</tt> | ||
+ | | atom density | ||
+ | | <tt>ADENS</tt> | ||
+ | | [in b<sup>-1</sup>cm<sup>-1</sup>] | ||
+ | |- | ||
+ | | <tt>mass</tt> | ||
+ | | mass density | ||
+ | | <tt>MDENS</tt> | ||
+ | | [in g/cm<sup>3</sup>] | ||
+ | |- | ||
+ | | <tt>activity</tt> | ||
+ | | activity | ||
+ | | <tt>A</tt> | ||
+ | | [in Bq] | ||
+ | |- | ||
+ | | <tt>dh</tt> | ||
+ | | decay heat | ||
+ | | <tt>H</tt> | ||
+ | | [in W] | ||
+ | |- | ||
+ | | <tt>sf</tt> | ||
+ | | spontaneous fission rate | ||
+ | | <tt>SF</tt> | ||
+ | | [in fissions/s] | ||
+ | |- | ||
+ | | <tt>gsrc</tt> | ||
+ | | photon emission rate | ||
+ | | <tt>GSRC</tt> | ||
+ | | [in photons/s] | ||
+ | |- | ||
+ | | <tt>ingtox</tt> | ||
+ | | ingestion toxicity | ||
+ | | <tt>ING_TOX</tt> | ||
+ | | [in Sv] | ||
+ | |- | ||
+ | | <tt>inhtox</tt> | ||
+ | | inhalation toxicity | ||
+ | | <tt>INH_TOX</tt> | ||
+ | | [in Sv] | ||
+ | |- | ||
+ | | <tt>all</tt> | ||
+ | | | ||
+ | | | ||
+ | | include full-set of variables | ||
+ | |- | ||
+ | | <tt>none</tt> | ||
+ | | | ||
+ | | | ||
+ | | exclude full-set of variables | ||
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | * | + | *For more information, see detailed description of the [[Description of output files#Burnup calculation output|burnup calculation output]]. |
− | + | ||
− | + | ||
=== set depstepbunorm === | === set depstepbunorm === | ||
Line 3,860: | Line 4,822: | ||
{| | {| | ||
| <tt>''NORM''</tt> | | <tt>''NORM''</tt> | ||
− | | depletion step normalization mode based on energy deposition (1 = all materials, 2 = burnable materials) | + | | : depletion step normalization mode based on energy deposition (1 = all materials, 2 = burnable materials) |
|} | |} | ||
<u>Notes</u> | <u>Notes</u> | ||
− | * | + | * Default values (see [[#set edepmode|set edepmode]]): |
+ | ** For energy deposition modes 0/1: the normalization includes only "<tt>burnable</tt>" materials - mode 2. | ||
+ | ** For energy deposition modes 2/3: the normalization includes "<tt>all materials</tt>" - mode 1. | ||
=== set dfsol === | === set dfsol === | ||
Line 3,872: | Line 4,836: | ||
{| | {| | ||
| <tt>''MODE''</tt> | | <tt>''MODE''</tt> | ||
− | | : boundary conditions for solver (1 = include net currents at boundary surfaces and corners, 2 = include only surface currents) | + | | : boundary conditions for solver (1 = include net currents at boundary surfaces and corners, 2 = include only surface currents). (default value: 1) |
|- | |- | ||
| <tt>''DC''</tt> | | <tt>''DC''</tt> | ||
− | | : type of diffusion coefficient used in the calculation (1 = | + | | : type of diffusion coefficient used in the calculation (1 = out-scattering 2 = transport correction). (default value: 1) |
|- | |- | ||
| <tt>''NP''</tt> | | <tt>''NP''</tt> | ||
− | | : number of points for trapezoidal integration for homogeneous flux | + | | : number of points for trapezoidal integration for homogeneous flux (default value: 100) |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | *This input option is used to control how the deterministic diffusion flux solver used to obtain assembly discontinuity factors [[#set adf| | + | *This input option is used to control how the deterministic diffusion flux solver used to obtain assembly discontinuity factors ([[#set adf|set adf]]) and pin power distributions ([[#set ppw|set ppw]]) is run. |
− | + | *The option syntax was revised in update 2.1.27 (<tt>''DC''</tt> option was added between <tt>''MODE''</tt> and <tt>''NP''</tt>). | |
− | + | *Deterministic diffusion flux solver use: | |
− | + | **Out-scattering approximation, <tt>INF_DIFFCOEF</tt> and <tt>INF_TRANSPXS</tt>. | |
− | + | **Transport correction, <tt>TRC_DIFFCOEF</tt> and <tt>TRC_TRANSPXS</tt>. It requires enabling the [[#set trc|set trc]] option. | |
− | *The | + | *For more information, see a detailed description on the [[Diffusion flux solver|built-in diffusion flux solver]]. |
=== set dix === | === set dix === | ||
'''set dix''' ''OPT'' | '''set dix''' ''OPT'' | ||
− | Sets double indexing for cross section energy grid look-up on or off: | + | Sets double indexing for cross section energy grid look-up on or off. Input values: |
{| | {| | ||
Line 3,899: | Line 4,863: | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | *Double indexing<ref name="dix">Leppänen, J. | + | *Double indexing is a method to speed-up the cross section look-up when energy grid unionization is not used for microscopic data. |
− | ''"Two practical methods for unionized energy grid construction in continuous-energy Monte Carlo neutron transport calculation."'' Ann. Nucl. Energy [https://www.sciencedirect.com/science/article/pii/S0306454909001108 '''36''' (2009) 878-885].</ref> | + | *The method can be used only in optimization modes 1 and 3 (modes 2 and 4 are based on energy grid unionization), see [[#set_opti|set opti]] option. |
− | + | * The methodology is described in related paper<ref name="dix">Leppänen, J. | |
+ | ''"Two practical methods for unionized energy grid construction in continuous-energy Monte Carlo neutron transport calculation."'' Ann. Nucl. Energy [https://www.sciencedirect.com/science/article/pii/S0306454909001108 '''36''' (2009) 878-885].</ref> | ||
=== set dspec === | === set dspec === | ||
'''set dspec''' ''EGRID<sub>p</sub>'' ''EGRID<sub>n</sub>'' | '''set dspec''' ''EGRID<sub>p</sub>'' ''EGRID<sub>n</sub>'' | ||
− | Sets the energy grid structure for decay spectra. | + | Sets the energy grid structure for decay spectra. Input values: |
{| | {| | ||
Line 3,919: | Line 4,884: | ||
*The photon/neutron decay spectra is printed in the <tt>[input]_gsrc.m</tt> or <tt>[input]_nsrc.m</tt> output file, respectively. | *The photon/neutron decay spectra is printed in the <tt>[input]_gsrc.m</tt> or <tt>[input]_nsrc.m</tt> output file, respectively. | ||
*The energy group spectra only include the contribution from the discrete/line spectra. | *The energy group spectra only include the contribution from the discrete/line spectra. | ||
− | * | + | *There is a special entry for the energy grid structure, <tt>''EGRID''</tt>: |
+ | **"<tt>-1</tt>": instead of providing the energy grid structure, it disables the option for the given particle type. | ||
=== set dt === | === set dt === | ||
Line 3,928: | Line 4,894: | ||
{| | {| | ||
| <tt>''NTRSH''</tt> | | <tt>''NTRSH''</tt> | ||
− | | : probability threshold for neutrons | + | | : probability threshold for neutrons (default value: 0.9) |
|- | |- | ||
| <tt>''GTRSH''</tt> | | <tt>''GTRSH''</tt> | ||
− | | : probability threshold for photons | + | | : probability threshold for photons (default value: 0.9) |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | + | *Tracking algorithm mode: | |
− | * | + | **Delta-tracking is used by default for both neutrons and photons |
− | * | + | **Switch to surface-tracking happens if the probability of sampling virtual collisions (ratio between material total cross section and the majorant) exceeds the given threshold. |
− | *" | + | *Probability threshold: |
+ | **The default probability threshold for both particle types is 0.9: i.e. delta-tracking is used if the ratio between total cross section and majorant is above 0.1. | ||
+ | **To enforce delta-tracking mode always: use "<tt>1</tt>". | ||
+ | **To enforce surface-tracking mode always: use "<tt>0</tt>" | ||
*Use of delta-tracking can be enforced or blocked in individual materials using the [[#set forcedt|set forcedt]] and [[#set blockdt|set blockdt]] options | *Use of delta-tracking can be enforced or blocked in individual materials using the [[#set forcedt|set forcedt]] and [[#set blockdt|set blockdt]] options | ||
− | *Integral reaction rates are scored using the collision estimator of neutron flux, which has a few adjustable parameters (see [[#set cfe|set cfe]]). | + | *Integral reaction rates are scored using the collision estimator of neutron flux, which has a few adjustable parameters (see [[#set cfe|set cfe]] option). |
*For more information on tracking modes, see the detailed description on [[delta- and surface-tracking]]. | *For more information on tracking modes, see the detailed description on [[delta- and surface-tracking]]. | ||
Line 3,950: | Line 4,919: | ||
{| | {| | ||
| <tt>''OPT</tt> | | <tt>''OPT</tt> | ||
− | | : option to switch on (1/yes) or off (0/no) the store/write dynamic data into a file. | + | | : option to switch on (1/yes) or off (0/no) the store/write dynamic data into a file. The default option is "<tt>on</tt>". |
|} | |} | ||
Line 3,957: | Line 4,926: | ||
'''set dynsrc''' ''PATH'' [ ''MODE'' ] | '''set dynsrc''' ''PATH'' [ ''MODE'' ] | ||
− | Links previously generated steady state source distributions to be used in a transient simulation with delayed neutron emission. | + | Links previously generated steady state source distributions to be used in a transient simulation with delayed neutron emission. Input values: |
{| | {| | ||
Line 3,972: | Line 4,941: | ||
=== set ecut === | === set ecut === | ||
− | '''set ecut''' ''EMIN<sub>n</sub>'' ''EMIN<sub>p<sub>'' | + | '''set ecut''' ''EMIN<sub>n</sub>'' [ ''EMIN<sub>p<sub>'' ] |
Sets minimum energy cut-off for neutrons and photons. Input values: | Sets minimum energy cut-off for neutrons and photons. Input values: | ||
{| | {| | ||
− | | <tt>''EMIN<sub>n</sub>''</tt> | + | | <tt>''EMIN<sub>n</sub>''</tt> |
− | | : cut-off energy for neutrons | + | | : cut-off energy for neutrons [in MeV] (default value: [[Definitions, units and constants#Constants|-INFTY]]/"no cut-off") |
|- | |- | ||
| <tt>''EMIN<sub>p</sub>''</tt> | | <tt>''EMIN<sub>p</sub>''</tt> | ||
− | | : cut-off energy for photons | + | | : cut-off energy for photons [in MeV] (default value: 1.0E-3) |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | |||
*Using energy cut-off for neutrons may lead to non-physical results, since fission and up-scattering may not be accurately modeled. | *Using energy cut-off for neutrons may lead to non-physical results, since fission and up-scattering may not be accurately modeled. | ||
*Versions 2.1.27 and earlier include only photon energy cut-off, which is now the second input parameter. | *Versions 2.1.27 and earlier include only photon energy cut-off, which is now the second input parameter. | ||
Line 3,996: | Line 4,964: | ||
{| | {| | ||
| <tt>''DENS<sub>i</sub>''</tt> | | <tt>''DENS<sub>i</sub>''</tt> | ||
− | | : mass density | + | | : mass density [in g/cm<sup>3</sup>] |
|- | |- | ||
| <tt>''EMIN<sub>p,i</sub>''</tt> | | <tt>''EMIN<sub>p,i</sub>''</tt> | ||
− | | : cut-off energy for photons | + | | : cut-off energy for photons [in MeV] |
|} | |} | ||
Line 4,015: | Line 4,983: | ||
|- | |- | ||
| <tt>''EMIN<sub>p,i</sub>''</tt> | | <tt>''EMIN<sub>p,i</sub>''</tt> | ||
− | | : cut-off energy for photons | + | | : cut-off energy for photons [in MeV] |
|} | |} | ||
Line 4,021: | Line 4,989: | ||
'''set eddi''' ''OPT'' | '''set eddi''' ''OPT'' | ||
− | + | Option that enables the calculation of Eddington factors. Input values: | |
{| | {| | ||
| <tt>''OPT''</tt> | | <tt>''OPT''</tt> | ||
− | | : option to switch calculation on (1) or off (0) | + | | : option to switch calculation on (1/yes) or off (0/no). The default option is "<tt>off</tt>". |
|} | |} | ||
<u>Notes:</u> | <u>Notes:</u> | ||
− | *Requires group constant generation to be set on. | + | *Requires group constant generation to be set on (see [[#set gcu|set gcu]]). |
=== set edepdel === | === set edepdel === | ||
Line 4,039: | Line 5,007: | ||
{| | {| | ||
| <tt>''OPT''</tt> | | <tt>''OPT''</tt> | ||
− | | : include (1) or exclude (0) the energy of delayed components in energy deposition estimates | + | | : include (1/yes) or exclude (0/no) the energy of delayed components in energy deposition estimates (default value: 1) |
|- | |- | ||
| <tt>''LOCAL_EGD''</tt> | | <tt>''LOCAL_EGD''</tt> | ||
− | | : deposit the energy of the delayed fission gammas to fission sites (1) or with the same distribution as the prompt fission gammas (0) ( | + | | : deposit the energy of the delayed fission gammas to fission sites ("<tt>1</tt>") or with the same distribution as the prompt fission gammas ("<tt>0</tt>"). (default value: 0) |
|} | |} | ||
Line 4,048: | Line 5,016: | ||
* Delayed components include delayed neutrons, delayed fission gammas and delayed betas. | * Delayed components include delayed neutrons, delayed fission gammas and delayed betas. | ||
− | |||
* The energy of the delayed components is deposited at the time of fission so the time dependence of the energy deposition is not accounted for properly in transient simulations. | * The energy of the delayed components is deposited at the time of fission so the time dependence of the energy deposition is not accounted for properly in transient simulations. | ||
− | * | + | * The energy of delayed neutrons can be excluded using this option only in energy deposition mode "<tt>3</tt>" (see [[#set edepmode|set edepmode]] option). |
+ | * Option to deposit the energy of the delayed fission gammas with the same distribution as the prompt fission gammas works only in criticality source simulations. | ||
=== set edepkcorr === | === set edepkcorr === | ||
Line 4,059: | Line 5,027: | ||
{| | {| | ||
| <tt>''OPT''</tt> | | <tt>''OPT''</tt> | ||
− | | : | + | | : option to switch the correction on (1/yes) or off (0/no). The default option is "<tt>on</tt>". |
|} | |} | ||
Line 4,074: | Line 5,042: | ||
{| | {| | ||
| <tt>''MODE''</tt> | | <tt>''MODE''</tt> | ||
− | | : energy deposition mode | + | | : energy deposition mode: 0, 1, 2 or 3 (default value: 0) |
|- | |- | ||
| <tt>''E_CAPT''</tt> | | <tt>''E_CAPT''</tt> | ||
− | | : additional energy release in capture reactions given in MeVs per fission ( | + | | : additional energy release in capture reactions given [in MeVs per fission] (default value: 0.0) |
|} | |} | ||
− | + | The possible setting for mode are: | |
− | * The energy deposition modes are described in related paper | + | ::{| class="wikitable" style="text-align: left;" |
+ | ! Mode | ||
+ | ! Description | ||
+ | ! Evaluation | ||
+ | |- | ||