Difference between revisions of "FINIX PB2 SIE example input"

From Serpent Wiki
Jump to: navigation, search
(Created page with "<span style="color:#ff0000">'''Note: FINIX currently does not include models for many burnup related changes in the fuel rods. The fuel behavior solution will be for fresh fue...")
 
m
 
(5 intermediate revisions by one other user not shown)
Line 1: Line 1:
 
<span style="color:#ff0000">'''Note: FINIX currently does not include models for many burnup related changes in the fuel rods. The fuel behavior solution will be for fresh fuel at all burnups.'''</span>
 
<span style="color:#ff0000">'''Note: FINIX currently does not include models for many burnup related changes in the fuel rods. The fuel behavior solution will be for fresh fuel at all burnups.'''</span>
  
Example of coupled burnup calculations using FINIX. The depletion scheme used is the Stochastic Implicit Euler's method<ref>J. Dufek and H. Anglart, "''Derivation of a stable coupling scheme for Monte Carlo burnup calculations with the thermal-hydraulic feedback''", Ann. Nucl. Energy '''62''', pp. 260 (2013)</ref> in which a stochastic approximation based relaxation applied to the transmutation cross sections and one-group fluxes used for the depletion solution.
+
Example of coupled burnup calculations using FINIX. The depletion scheme used is the Stochastic Implicit Euler's method<ref>J. Dufek and H. Anglart, "''Derivation of a stable coupling scheme for Monte Carlo burnup calculations with the thermal-hydraulic feedback''", Ann. Nucl. Energy '''62''', pp. 260 (2013) DOI: [http://dx.doi.org/10.1016/j.anucene.2013.06.025 10.1016/j.anucene.2013.06.025]</ref> in which a stochastic approximation based relaxation applied to the transmutation cross sections and one-group fluxes used for the depletion solution.
  
 
The input model is based on the Peach Bottom 2 BWR assembly from the UAM benchmark
 
The input model is based on the Peach Bottom 2 BWR assembly from the UAM benchmark
<ref>Ivanov et al. "''Benchmarks for Uncertainty Analysis in Modelling (UAM) for the Design, Operation and Safety Analysis of LWRs, Volume I: Specification and Support Data for Neutronics Cases (Phase I), Version 2.1''", NEA/NSC/DOC(2013)7</ref> with the segmented absorber rod replaced by a full length one. For simplicity the Serpent input has been divided into multiple files using the [[Input syntax manual#include (read another input file)|include]] card.
+
<ref>K. Ivanov et al. "''Benchmarks for Uncertainty Analysis in Modelling (UAM) for the Design, Operation and Safety Analysis of LWRs, Volume I: Specification and Support Data for Neutronics Cases (Phase I), Version 2.1''", NEA/NSC/DOC(2013)7</ref> with the segmented absorber rod replaced by a full length one. For simplicity the Serpent input has been divided into multiple files using the [[Input syntax manual#include (read another input file)|include]] card.
  
 
== Main Serpent input ==
 
== Main Serpent input ==
  
  <nowiki>
+
  <nowiki>% --- Asymmetric BWR assembly with Gd-pins -------------------
% --- Asymmetric BWR assembly with Gd-pins -------------------
+
  
 
set title "Peach Bottom 2 from UAM, FINIX calculation"
 
set title "Peach Bottom 2 from UAM, FINIX calculation"
Line 32: Line 31:
 
set finoptionsfile  "./finixfiles/options_library.txt"
 
set finoptionsfile  "./finixfiles/options_library.txt"
 
set finscenariofile "./finixfiles/scenario_library.txt"
 
set finscenariofile "./finixfiles/scenario_library.txt"
 
include "/home/vvvillehe/Serpent2/serpdefaults.txt"
 
  
 
% --- Define sub-pin-level power binning for FINIX
 
% --- Define sub-pin-level power binning for FINIX
% Name bin1, 6 radial zones in pellet, 10 axial zones
+
% Name bin1, 6 radial zones in pellet, 24 axial zones
  
 
finbin bin1 0.0 0.60579 6 -182.88 182.88 10
 
finbin bin1 0.0 0.60579 6 -182.88 182.88 10
Line 49: Line 46:
  
 
% --- Neutron population and criticality cycles:
 
% --- Neutron population and criticality cycles:
% --- This is simulated on each iteration  
+
% --- This is simulated on each iteration
% !!! This small number does not lead to proper statistics
+
  
set pop 5000 50 100
+
set pop 5000 20 20
  
 
% --- This is the number of iterations for each neutronics solution
 
% --- This is the number of iterations for each neutronics solution
 +
%    Number of iterations is set with "set sie" card when using SIE
  
set ccmaxiter 2
+
% set ccmaxiter 2
  
 
% --- Use a smaller number of inactive cycles on subsequent neutron transport solutions
 
% --- Use a smaller number of inactive cycles on subsequent neutron transport solutions
Line 63: Line 60:
 
set fsp 1 50
 
set fsp 1 50
  
% --- Depletion scheme (constant extrapolation, i.e., Explicit euler)
+
% --- Depletion scheme (Stochastic Implicit Euler with 2 iterations per depletion step)
  
set pcc ce
+
set sie 2
  
 
% --- Depletion history (just two steps)
 
% --- Depletion history (just two steps)
Line 72: Line 69:
  
 
% --- Use a lower optimization mode to save memory
 
% --- Use a lower optimization mode to save memory
%    Calculations that use the TMS on-the-fly Doppler treatment
 
%    do not use grid thinning, which increases memory consumption
 
  
 
set opti 1
 
set opti 1
Line 110: Line 105:
 
% --- xz-plot of temperature distribution / thermal flux
 
% --- xz-plot of temperature distribution / thermal flux
  
mesh 10 2 1000 3000 0 -7.62 7.62 -7.62 7.62 -250.0 250.0
+
mesh 10 2 1000 3000 0 -7.62 7.62 -7.62 7.62 -250.0 250.0</nowiki>
</nowiki>
+
  
 
== Additional Serpent files ==
 
== Additional Serpent files ==
Line 557: Line 551:
  
 
<references/>
 
<references/>
 +
 +
[[Category:Example input files|FINIX]]

Latest revision as of 13:28, 29 November 2017

Note: FINIX currently does not include models for many burnup related changes in the fuel rods. The fuel behavior solution will be for fresh fuel at all burnups.

Example of coupled burnup calculations using FINIX. The depletion scheme used is the Stochastic Implicit Euler's method[1] in which a stochastic approximation based relaxation applied to the transmutation cross sections and one-group fluxes used for the depletion solution.

The input model is based on the Peach Bottom 2 BWR assembly from the UAM benchmark [2] with the segmented absorber rod replaced by a full length one. For simplicity the Serpent input has been divided into multiple files using the include card.

Main Serpent input

% --- Asymmetric BWR assembly with Gd-pins -------------------

set title "Peach Bottom 2 from UAM, FINIX calculation"

% --- Remember to set TMS limits for materials

include materials

include pins

include geometry

include volumes

% --- Reflective boundary condition in XY, black in Z:

set bc 2 2 1

% --- Link FINIX input files

set finrodfile      "./finixfiles/rod_library.txt"
set finoptionsfile  "./finixfiles/options_library.txt"
set finscenariofile "./finixfiles/scenario_library.txt"

% --- Define sub-pin-level power binning for FINIX
% Name bin1, 6 radial zones in pellet, 24 axial zones

finbin bin1 0.0 0.60579 6 -182.88 182.88 10

% --- Link finix solvers for each pin type

finrod 1 rod_pb2_nogd  options_pb2_all scenario_pb2_all bin1
finrod 2 rod_pb2_nogd  options_pb2_all scenario_pb2_all bin1
finrod 3 rod_pb2_nogd  options_pb2_all scenario_pb2_all bin1
finrod 4 rod_pb2_nogd  options_pb2_all scenario_pb2_all bin1
finrod 5 rod_pb2_yesgd options_pb2_all scenario_pb2_all bin1

% --- Neutron population and criticality cycles:
% --- This is simulated on each iteration

set pop 5000 20 20

% --- This is the number of iterations for each neutronics solution
%     Number of iterations is set with "set sie" card when using SIE

% set ccmaxiter 2

% --- Use a smaller number of inactive cycles on subsequent neutron transport solutions
% --- (Fission source passing on, number of alternative cycles is 50)

set fsp 1 50

% --- Depletion scheme (Stochastic Implicit Euler with 2 iterations per depletion step)

set sie 2

% --- Depletion history (just two steps)

dep daystep 5 5

% --- Use a lower optimization mode to save memory

set opti 1

% --- Division of materials to depletion zones

div fuel1 sep 0 subz 10 -182.88 182.88 
div fuel2 sep 0 subz 10 -182.88 182.88 
div fuel3 sep 0 subz 10 -182.88 182.88 
div fuel4 sep 0 subz 10 -182.88 182.88 
div fuel5 sep 0 subz 10 -182.88 182.88 subr 5 0.0 0.60579

% --- Total power

set power 3.0e+06

% --- Geometry and mesh plots:

plot 3 1000 1000 0.0 
plot 3 1000 1000 0.0 -22.86 7.62 -22.86 7.62
plot 2 500 1500
plot 1 500 1500

% --- xy-plot of fission power / thermal flux

mesh 3 1000 1000 0 -7.62 7.62 -7.62 7.62 -250.0 250.0

% --- xz-plot of fission power / thermal flux

mesh 2 1000 3000 0 -7.62 7.62 -7.62 7.62 -250.0 250.0

% --- xy-plot of temperature distribution / thermal flux

mesh 10 3 1000 1000 0 -7.62 7.62 -7.62 7.62 -250.0 250.0

% --- xz-plot of temperature distribution / thermal flux

mesh 10 2 1000 3000 0 -7.62 7.62 -7.62 7.62 -250.0 250.0

Additional Serpent files

materials file

% --- Fuel materials, TMS limits 557 K and 2100 K:

% Fuel1 2.93 wt % enrichment
mat fuel1   -10.42 burn 1 tft 557.0 2100.0 rgb 100 0 0
92235.03c   -0.0258279
92238.03c   -0.85567041
8016.03c    -0.11850169

% Fuel2 1.94 wt % enrichment
mat fuel2   -10.42 burn 1 tft 557.0 2100.0 rgb 160 0 0
92235.03c   -0.01710132
92238.03c   -0.86441006
8016.03c    -0.11848862

% Fuel3 1.69 wt % enrichment
mat fuel3   -10.42 burn 1 tft 557.0 2100.0 rgb 200 75 75
92235.03c   -0.0148976
92238.03c   -0.86661708
8016.03c    -0.11848532

% Fuel4 1.33 wt % enrichment
mat fuel4   -10.42 burn 1 tft 557.0 2100.0 rgb 255 150 150
92235.03c   -0.01172421
92238.03c   -0.86979522
8016.03c    -0.11848057

% --- Fuel with Gd, TMS limits 557 K and 2100 K:

% Fuel5 2.93 wt % enrichment, 3.0 wt% Gadcontent
mat fuel5   -10.25 burn 1 tft 557.0 2100.0 rgb 0 100 0
92235.03c   -0.02505306
92238.03c   -0.8300003
8016.03c    -0.11891791
64152.03c   -0.00005029
64154.03c   -0.00055541
64155.03c   -0.00379519
64156.03c   -0.00528302
64157.03c   -0.004065
64158.03c   -0.00649317
64160.03c   -0.00578667

% --- Zirc2 cladding, TMS limits 557 K and 1000 K:

mat Zirc2 -6.56000E+00 tft 557.0 1000.0 rgb 200 200 200
 8016.03c  -1.19376E-03
24052.03c  -8.34483E-04
26056.03c  -9.16258E-04
28058.03c  -3.35317E-04
28060.03c  -1.33612E-04
28062.03c  -1.91358E-05
40090.03c  -4.98111E-01
40091.03c  -1.09835E-01
40092.03c  -1.69731E-01
40094.03c  -1.75753E-01
40096.03c  -2.89183E-02
50112.03c  -1.27668E-04
50116.03c  -1.98205E-03
50117.03c  -1.05596E-03
50118.03c  -3.35857E-03
50119.03c  -1.20129E-03
50120.03c  -4.59450E-03
50122.03c  -6.63830E-04
50124.03c  -8.43778E-04

% --- Assembly box treated as zircaloy, composition is the same as
%     Zirc2, but has to be separate as the temperature is constant

mat box      -6.56000E+00 tmp 557.0 rgb 200 200 200
 8016.03c  -1.19376E-03
24052.03c  -8.34483E-04
26056.03c  -9.16258E-04
28058.03c  -3.35317E-04
28060.03c  -1.33612E-04
40090.03c  -4.98111E-01
40091.03c  -1.09835E-01
40092.03c  -1.69731E-01
40094.03c  -1.75753E-01
40096.03c  -2.89183E-02
50112.03c  -1.27668E-04
50116.03c  -1.98205E-03
50117.03c  -1.05596E-03
50118.03c  -3.35857E-03
50119.03c  -1.20129E-03
50120.03c  -4.59450E-03
50122.03c  -6.63830E-04
50124.03c  -8.43778E-04

% --- "Steel, Stainless 304" [PNNL-15870, Rev. 1]

mat ssteel -8.00000E+00 tmp 557.0 rgb 100 100 100
 6012.03c  -3.95366E-04
14028.03c  -4.59332E-03
14029.03c  -2.41681E-04
14030.03c  -1.64994E-04
15031.03c  -2.30000E-04
16032.03c  -1.42073E-04
24050.03c  -7.93000E-03
24052.03c  -1.59029E-01
24053.03c  -1.83798E-02
24054.03c  -4.66139E-03
25055.03c  -1.00000E-02
26054.03c  -3.96166E-02
26056.03c  -6.44901E-01
26057.03c  -1.51600E-02
26058.03c  -2.05287E-03
28058.03c  -6.21579E-02
28060.03c  -2.47678E-02
28061.03c  -1.09461E-03
28062.03c  -3.54721E-03
28064.03c  -9.32539E-04

% --- Coolant (40% void fraction):

mat cool     -0.46072  moder lwtr 1001 tmp 557 rgb 150 150 255
 1001.03c     0.66667
 8016.03c     0.33333

% --- Moderator:

mat moder    -0.46072  moder lwtr 1001 tmp 557 rgb 50 50 255
 1001.03c     0.666667
 8016.03c     0.333333

% --- Thermal scattering data for light water:

% (HinH20 at 573.60K)
therm lwtr lwj3.11t 

pins file

% --- Empty lattice position:

pin 99
cool   

% --- Fuel pins:

pin 1
fuel1  0.60579
void   0.62103
Zirc2  0.71501
cool

pin 2
fuel2  0.60579
void   0.62103
Zirc2  0.71501
cool

pin 3
fuel3  0.60579
void   0.62103
Zirc2  0.71501
cool

pin 4
fuel4  0.60579
void   0.62103
Zirc2  0.71501
cool

pin 5
fuel5  0.60579
void   0.62103
Zirc2  0.71501
cool

geometry file

lat 100 1  0.23876  0.23876 9 9 1.875 % *
99 99 99 99 99 99 99 99 99
99  4  3  3  2  2  2  3 99
99  3  2  1  1  1  1  2 99
99  3  1  5  1  1  5  1 99
99  2  1  1  1  1  1  2 99
99  2  1  1  1  5  1  1 99
99  2  1  5  1  1  1  2 99
99  3  2  1  1  1  2  2 99
99 99 99 99 99 99 99 99 99 


% --- Outer channel (assembly pitch = 15.375):

surf  1  sqc   0.23876  0.23876  6.70306 % *
surf  2  sqc   0.23876  0.23876  6.90626

% --- Axial limits of the active part

surf  4  pz -182.88 % Active stack length 365.76 cm
surf  5  pz  182.88 % Active stack length 365.76 cm

% --- Boundary of one assembly cell

surf  9  cuboid  -7.62 7.62 -7.62 7.62 -250.0 250.0

% --- Cell definitions:

cell  3  101  fill 100  -1          % Pin lattice
cell  4  101  box        1          % Channel box wall

cell  5  0  fill 101   -2 4 -5      % assembly inside channel box outer wall
cell  6  0  moder       2 4 -5 -9   % Water outside channel box
cell  9  0  moder        -4    -9   % bottom reflector
cell 10  0  moder            5 -9   % top reflector

cell 99  0  outside             9   % Outside world

volumes file

set mvol

fuel1  10 1.05422E+03
fuel1   9 1.05422E+03
fuel1   8 1.05422E+03
fuel1   7 1.05422E+03
fuel1   6 1.05422E+03
fuel1   5 1.05422E+03
fuel1   4 1.05422E+03
fuel1   3 1.05422E+03
fuel1   2 1.05422E+03
fuel1   1 1.05422E+03
fuel2  10 5.48193E+02
fuel2   9 5.48193E+02
fuel2   8 5.48193E+02
fuel2   7 5.48193E+02
fuel2   6 5.48193E+02
fuel2   5 5.48193E+02
fuel2   4 5.48193E+02
fuel2   3 5.48193E+02
fuel2   2 5.48193E+02
fuel2   1 5.48193E+02
fuel3  10 2.53012E+02
fuel3   9 2.53012E+02
fuel3   8 2.53012E+02
fuel3   7 2.53012E+02
fuel3   6 2.53012E+02
fuel3   5 2.53012E+02
fuel3   4 2.53012E+02
fuel3   3 2.53012E+02
fuel3   2 2.53012E+02
fuel3   1 2.53012E+02
fuel4  10 4.21687E+01
fuel4   9 4.21687E+01
fuel4   8 4.21687E+01
fuel4   7 4.21687E+01
fuel4   6 4.21687E+01
fuel4   5 4.21687E+01
fuel4   4 4.21687E+01
fuel4   3 4.21687E+01
fuel4   2 4.21687E+01
fuel4   1 4.21687E+01
fuel5  50 3.37350E+01
fuel5  49 3.37350E+01
fuel5  48 3.37350E+01
fuel5  47 3.37350E+01
fuel5  46 3.37350E+01
fuel5  45 3.37350E+01
fuel5  44 3.37350E+01
fuel5  43 3.37350E+01
fuel5  42 3.37350E+01
fuel5  41 3.37350E+01
fuel5  40 3.37350E+01
fuel5  39 3.37350E+01
fuel5  38 3.37350E+01
fuel5  37 3.37350E+01
fuel5  36 3.37350E+01
fuel5  35 3.37350E+01
fuel5  34 3.37350E+01
fuel5  33 3.37350E+01
fuel5  32 3.37350E+01
fuel5  31 3.37350E+01
fuel5  30 3.37350E+01
fuel5  29 3.37350E+01
fuel5  28 3.37350E+01
fuel5  27 3.37350E+01
fuel5  26 3.37350E+01
fuel5  25 3.37350E+01
fuel5  24 3.37350E+01
fuel5  23 3.37350E+01
fuel5  22 3.37350E+01
fuel5  21 3.37350E+01
fuel5  20 3.37350E+01
fuel5  19 3.37350E+01
fuel5  18 3.37350E+01
fuel5  17 3.37350E+01
fuel5  16 3.37350E+01
fuel5  15 3.37350E+01
fuel5  14 3.37350E+01
fuel5  13 3.37350E+01
fuel5  12 3.37350E+01
fuel5  11 3.37350E+01
fuel5  10 3.37350E+01
fuel5   9 3.37350E+01
fuel5   8 3.37350E+01
fuel5   7 3.37350E+01
fuel5   6 3.37350E+01
fuel5   5 3.37350E+01
fuel5   4 3.37350E+01
fuel5   3 3.37350E+01
fuel5   2 3.37350E+01
fuel5   1 3.37350E+01

FINIX input files

rod_library.txt file

! Peach Bottom 2 BWR rod from UAM description
! No gadolinia

begin rod_pb2_nogd

pellet_inner_radius = 0.0             
pellet_outer_radius = 6.0579e-03      
clad_inner_radius = 6.2103e-03    
clad_outer_radius = 7.1501e-03    
fuel_axial_length = 3.6576
clad_axial_length = 3.6576

plenum_length = 0.4013               

pellet_roughness = 2.0e-6
fractional_density = 0.951
gadolinia_weight_fraction = 0.0

clad_roughness = 0.5e-6
coldwork = 0.5                
clad_oxygen_concentration = 0.0012      
fast_neutron_fluence = 0.0    

! Fill gas pressure (Pa)
fill_gas_pressure = 0.69e6

! As-fabricated fill-gas temperature
fill_gas_temperature = 300.0

! Fill gas fractions
gas_fraction_He = 1.0
gas_fraction_Ar = 0.0
gas_fraction_Kr = 0.0
gas_fraction_Xe = 0.0
gas_fraction_H2 = 0.0
gas_fraction_N2 = 0.0
gas_fraction_H2O = 0.0

! Rod pitch
pitch = 18.75e-3

! Number of rods in unit cell (1.0 in square, 0.5 in triangular lattice)
unitcell = 1.0

end rod_pb2_nogd


! Peach Bottom 2 BWR rod from UAM description
! 3.0 wt-% gadolinia

begin rod_pb2_yesgd

pellet_inner_radius = 0.0             
pellet_outer_radius = 6.0579e-03      
clad_inner_radius = 6.2103e-03    
clad_outer_radius = 7.1501e-03    
fuel_axial_length = 3.6576
clad_axial_length = 3.6576

plenum_length = 0.4013               

pellet_roughness = 2.0e-6
fractional_density = 0.951
gadolinia_weight_fraction = 0.03

clad_roughness = 0.5e-6
coldwork = 0.5                
clad_oxygen_concentration = 0.0012      
fast_neutron_fluence = 0.0    

! Fill gas pressure (Pa)
fill_gas_pressure = 0.69e6

! As-fabricated fill-gas temperature
fill_gas_temperature = 300.0

! Fill gas fractions
gas_fraction_He = 1.0
gas_fraction_Ar = 0.0
gas_fraction_Kr = 0.0
gas_fraction_Xe = 0.0
gas_fraction_H2 = 0.0
gas_fraction_N2 = 0.0
gas_fraction_H2O = 0.0

! Rod pitch
pitch = 18.75e-3

! Number of rods in unit cell (1.0 in square, 0.5 in triangular lattice)
unitcell = 1.0

end rod_pb2_yesgd

options_library.txt file

! Basic options for the Peach Bottom 2 simulation

begin options_pb2_all

! Number of nodes in the thermal/mechanical solution

axial_nodes = 10
pellet_radial_nodes = 51
clad_radial_nodes = 21

! Boundary condition is fixed cladding outer temperature
! NB: This must be given in the scenario

boundary_option = 0

end options_pb2_all

scenario_library.txt file

! Basic scenario for Peach Bottom 2 simulations using clad surface temperature
! as a boundary condition

begin scenario_pb2_all

! Clad temperature history 

! Only one axial zone 
clad_temperature_history_zones = 3.6576

! Temperature, time pairs for first axial zone
! Only one time point now
clad_temperature_history(1) = 570.0, 0.0

end scenario_pb2_all

References

  1. ^ J. Dufek and H. Anglart, "Derivation of a stable coupling scheme for Monte Carlo burnup calculations with the thermal-hydraulic feedback", Ann. Nucl. Energy 62, pp. 260 (2013) DOI: 10.1016/j.anucene.2013.06.025
  2. ^ K. Ivanov et al. "Benchmarks for Uncertainty Analysis in Modelling (UAM) for the Design, Operation and Safety Analysis of LWRs, Volume I: Specification and Support Data for Neutronics Cases (Phase I), Version 2.1", NEA/NSC/DOC(2013)7