ENDF reaction MT's and macroscopic reaction numbers

From Serpent Wiki
Revision as of 13:58, 21 November 2015 by Jaakko Leppänen (Talk | contribs) (ENDF Reaction MT's)

Jump to: navigation, search

Serpent uses standard ENDF reaction MT's to identify neutron and photon reactions. The number are used with detector response functions and printed in various output files. Detector responses also include macroscopic cross sections, identified by negative reaction numbers.

Below are descriptive lists of ENDF reaction MT's and macroscopic reaction numbers. For more information on the MT numbers, see the ENDF Format Manual.[1]

ENDF Reaction MT's

MT Description Notes
1 total
2 elastic scattering
3 nonelastic
4 total inelastic scattering
5 anything used for lumping together multiple reaction modes
11 (n,2nd)
16 (n,2n)
17 (n,3n)
18 total fission sum over all fission channels (MT's 19-21 and 38)
19 (n,f) 1st-chance fission
20 (n,nf) 2nd-chance fission
21 (n,2nf) 3rd-chance fission
22 (n,nα)
23 (n,n3α)
24 (n,2nα)
25 (n,3nα)
27 absorption
28 (n,np)
29 (n,n2α)
30 (n,2n2α)
32 (n,nd)
33 (n,nt)
34 (n,n3He)
35 (n,nd2α)
36 (n,nt2α)
37 (n,4n)
38 (n,3nf) 4th-chance fission
41 (n,2np)
42 (n,3np)
44 (n,n2p)
45 (n,npα)
51-90 inelastic scattering to excited states
91 inelastic scattering to continuum
101 total absorption
102 (n,γ)
103 (n,p)
104 (n,d)
105 (n,t)
106 (n,3He)
107 (n,α)
108 (n,2α)
109 (n,3α)
111 (n,2p)
112 (n,pα)
113 (n,t2α)
114 (n,d2α)
115 (n,pd)
116 (n,pt)
117 (n,dα)
201 total neutron production Note to developers: check if this needs to be multiplied by total xs'
202 total photon production Note to developers: check if this needs to be multiplied by total xs'
203 total proton production Note to developers: check if this needs to be multiplied by total xs'
204 total deuteron production Note to developers: check if this needs to be multiplied by total xs'
205 total triton production Note to developers: check if this needs to be multiplied by total xs'
206 total 3He production Note to developers: check if this needs to be multiplied by total xs
207 total α production Note to developers: check if this needs to be multiplied by total xs
301 total heat production Total heating number multiplied by total cross section (difference to MCNP)
443 kinematic KERMA Note to developers: check if this needs to be multiplied by total xs'
444 damage-energy production Note to developers: check if this needs to be multiplied by total xs'
600 (n,p) to ground state MT's 600-649 can be used to replace MT 103
601-648 (n,p) to excited states
649 (n,p) to continuum
650 (n,d) to ground state MT's 650-699 can be used to replace MT 104
651-698 (n,d) to excited states
699 (n,d) to continuum
700 (n,t) to ground state MT's 700-749 can be used to replace MT 105
701-748 (n,t) to excited states
749 (n,t) to continuum
750 (n,3He) to ground state MT's 750-799 can be used to replace MT 106
751-798 (n,3He) to excited states
799 (n,3He) to continuum
800 (n,α) to ground state MT's 800-849 can be used to replace MT 107
801 - 848 (n,α) to excited states
849 (n,α) to continuum
875 (n,2n) to ground state MT's 875-891 can be used to replace MT 16
876-890 (n,2n) to excited states
891 (n,2n) to continuum

Macroscopic reaction numbers

References

  1. ^ Herman, M. and Trkov, A. "ENDF-6 Formats Manual." CSEWG Document ENDF-102 / BNL-90365-2009.