Output parameters

From Serpent Wiki
Revision as of 15:42, 23 September 2016 by Jaakko Leppänen (talk | contribs)
Jump to: navigation, search

This page lists the output parameters in the main _res.m output file.


Homogenized group constants

Notes:

  • Group constants are calculated by first homogenizing the geometry using a multi-group structure with H energy groups. The data is then collapsed into the final few-group structure with G groups using the infinite and B1 leakage-corrected flux spectra.
  • The B1 calculation is off by default, and invoked by the set fum option.
  • The intermediate multi-group structure is defined using option set micro.
  • The few-group structure is defined using option set nfg.
  • The universes in which the group constants are calculated are listed in option set gcu. The calculation is performed for root universe 0 by default, and can be switched off with "set gcu -1".
  • If data is produced in multiple universes within a single run, the data is assigned with different run indexes (idx)
  • The parameter names can be listed in the set coefpara option, and they will be included in the group constant output file when the automated burnup sequence is invoked.
  • The order in which two-dimensional data (scattering matrices, ADF and pin-power parameters) is printed in the .coef output is different from what is listed below in update 2.1.24 and earlier versions.

Common parameters

Parameter Size Description
GC_UNIVERSE_NAME (string) Name of the universe where spatial homogenization was performed
MICRO_NG 1 Number of energy groups in the intermediate multi-group structure (referred to as H below)
MICRO_E H + 1 Group boundaries in the intermediate multi-group structure (in ascending order)
MACRO_NG 1 Number of energy groups in the final few-group structure (referred to as G below)
MACRO_E G + 1 Group boundaries in the final few-group structure (in descending order)

Group constants homogenized in infinite spectrum

Parameter Size Description
INF_MICRO_FLX 2H Multi-group flux spectrum (integral, un-normalized)
INF_FLX 2G Few-group flux (integral, normalized)
INF_KINF 2 Infinite multiplication factor

Reaction cross sections

Parameter Size Description
INF_TOT 2G Total cross section
INF_CAPT 2G Capture cross section
INF_FISS 2G Fission cross section
INF_NSF 2G Fission neutron production cross section
INF_KAPPA 2G Average deposited fission energy (MeV)
INF_INVV 2G Inverse neutron speed (s/cm)
INF_NUBAR 2G Average neutron yield
INF_ABS 2G Absorption cross section (capture + fission)
INF_REMXS 2G Removal cross section (group-removal + absorption)
INF_RABSXS 2G Reduced absorption cross section (total - scattering production)

Fission spectra

Parameter Size Description
INF_CHIT 2G Fission spectrum (total)
INF_CHIP 2G Fission spectrum (prompt neutrons)
INF_CHID 2G Fission spectrum (delayed neutrons)

Scattering cross sections

Notes:

  • Scattering production includes multiplying (n,2n), (n,3n), etc. reactions.
Parameter Size Description
INF_SCATT0 2G Total P0 scattering cross section
INF_SCATT1 2G Total P1 scattering cross section
INF_SCATT2 2G Total P2 scattering cross section
INF_SCATT3 2G Total P3 scattering cross section
INF_SCATT4 2G Total P4 scattering cross section
INF_SCATT5 2G Total P5 scattering cross section
INF_SCATT6 2G Total P6 scattering cross section
INF_SCATT7 2G Total P7 scattering cross section
INF_SCATTP0 2G Total P0 scattering production cross section
INF_SCATTP1 2G Total P1 scattering production cross section
INF_SCATTP2 2G Total P2 scattering production cross section
INF_SCATTP3 2G Total P3 scattering production cross section
INF_SCATTP4 2G Total P4 scattering production cross section
INF_SCATTP5 2G Total P5 scattering production cross section
INF_SCATTP6 2G Total P6 scattering production cross section
INF_SCATTP7 2G Total P7 scattering production cross section

Scattering matrices

Notes:

  • Scattering production includes multiplying (n,2n), (n,3n), etc. reactions.
  • The order of values (.coe) or value pairs (_res.m) is: \Sigma_{1,1} \, \Sigma_{1,2} \, ... \, \Sigma_{2,1} \, \Sigma_{2,2}  \, ... where \Sigma_{g,g'} refers to scattering from group g to g'.
  • The data in the _res.m file can be read into a G by G matrix with Matlab reshape-command, for example: reshape(INF_S0(idx,1:2:end), G, G).
Parameter Size Description
INF_S0 4G2 P0 scattering matrix
INF_S1 4G2 P1 scattering matrix
INF_S2 4G2 P2 scattering matrix
INF_S3 4G2 P3 scattering matrix
INF_S4 4G2 P4 scattering matrix
INF_S5 4G2 P5 scattering matrix
INF_S6 4G2 P6 scattering matrix
INF_S7 4G2 P7 scattering matrix
INF_SP0 4G2 P0 scattering production matrix
INF_SP1 4G2 P1 scattering production matrix
INF_SP2 4G2 P2 scattering production matrix
INF_SP3 4G2 P3 scattering production matrix
INF_SP4 4G2 P4 scattering production matrix
INF_SP5 4G2 P5 scattering production matrix
INF_SP6 4G2 P6 scattering production matrix
INF_SP7 4G2 P7 scattering production matrix

Diffusion parameters

Notes:

  • The cumulative migration method [1] was first developed for the OpenMC code. Currently the method works only when the homogenized region covers the entire geometry, and is surrounded by periodic or reflective boundary conditions.
Parameter Size Description
INF_TRANSPXS 2G Transport cross section (calculated using the out-scattering approximation)
INF_DIFFCOEF 2G Diffusion coefficient (calculated using the out-scattering approximation)
CMM_TRANSPXS 2G Transport cross section calculated using the cumulative migration method (equivalent with the in-scattering approximation)
CMM_TRANSPXS_X 2G X-component of the directional transport cross section calculated using the cumulative migration method (equivalent with the in-scattering approximation)
CMM_TRANSPXS_Y 2G Y-component of the directional transport cross section calculated using the cumulative migration method (equivalent with the in-scattering approximation)
CMM_TRANSPXS_Z 2G Z-component of the directional transport cross section calculated using the cumulative migration method (equivalent with the in-scattering approximation)
CMM_DIFFCOEF 2G Diffusion coefficient calculated using the cumulative migration method (equivalent with the in-scattering approximation)
CMM_DIFFCOEF_X 2G X-component of the directional diffusion coefficient calculated using the cumulative migration method (equivalent with the in-scattering approximation)
CMM_DIFFCOEF_Y 2G Y-component of the directional diffusion coefficient calculated using the cumulative migration method (equivalent with the in-scattering approximation)
CMM_DIFFCOEF_Z 2G Z-component of the directional diffusion coefficient calculated using the cumulative migration method (equivalent with the in-scattering approximation)

Poison cross sections

Notes:

  • Printed only if poison cross section option is on (see set poi).
Parameter Size Description
INF_I135_YIELD 2G Fission yield of I-135 (cumulative, includes all precursors)
INF_XE135_YIELD 2G Fission yield of Xe-135
INF_PM149_YIELD 2G Fission yield of Pm-149 (cumulative, includes all precursors)
INF_SM149_YIELD 2G Fission yield of Sm-149
INF_I135_MICRO_ABS 2G Microscopic absorption cross section of I-135
INF_XE135_MICRO_ABS 2G Microscopic absorption cross section of Xe-135
INF_PM149_MICRO_ABS 2G Microscopic absorption cross section of Pm-149
INF_SM149_MICRO_ABS 2G Microscopic absorption cross section of Sm-149
INF_XE135_MACRO_ABS 2G Macroscopic absorption cross section of Xe-135
INF_SM149_MACRO_ABS 2G Macroscopic absorption cross section of Sm-149

Group constants homogenized in B1 leakage-corrected spectrum

Parameter Size Description
B1_MICRO_FLX 2H Multi-group flux spectrum (integral, un-normalized)
B1_FLX 2G Few-group flux (integral, normalized)
B1_KINF 2 Infinite multiplication factor
B1_KEFF 2 Effective multiplication factor
B1_B2 2 Critical buckling
B1_ERR 2 Absolute deviation of keff from unity

Reaction cross sections

Parameter Size Description
B1_TOT 2G Total cross section
B1_CAPT 2G Capture cross section
B1_FISS 2G Fission cross section
B1_NSF 2G Fission neutron production cross section
B1_KAPPA 2G Average deposited fission energy (MeV)
B1_INVV 2G Inverse neutron speed (s/cm)
B1_NUBAR 2G Average neutron yield
B1_ABS 2G Absorption cross section (capture + fission)
B1_REMXS 2G Removal cross section (group-removal + absorption)
B1_RABSXS 2G Reduced absorption cross section (total - scattering production)

Fission spectra

Parameter Size Description
B1_CHIT 2G Fission spectrum (total)
B1_CHIP 2G Fission spectrum (prompt neutrons)
B1_CHID 2G Fission spectrum (delayed neutrons)

Scattering cross sections

Notes:

  • Scattering production includes multiplying (n,2n), (n,3n), etc. reactions.
Parameter Size Description
B1_SCATT0 2G Total P0 scattering cross section
B1_SCATT1 2G Total P1 scattering cross section
B1_SCATT2 2G Total P2 scattering cross section
B1_SCATT3 2G Total P3 scattering cross section
B1_SCATT4 2G Total P4 scattering cross section
B1_SCATT5 2G Total P5 scattering cross section
B1_SCATT6 2G Total P6 scattering cross section
B1_SCATT7 2G Total P7 scattering cross section
B1_SCATTP0 2G Total P0 scattering production cross section
B1_SCATTP1 2G Total P1 scattering production cross section
B1_SCATTP2 2G Total P2 scattering production cross section
B1_SCATTP3 2G Total P3 scattering production cross section
B1_SCATTP4 2G Total P4 scattering production cross section
B1_SCATTP5 2G Total P5 scattering production cross section
B1_SCATTP6 2G Total P6 scattering production cross section
B1_SCATTP7 2G Total P7 scattering production cross section

Scattering matrices

Notes:

  • Scattering production includes multiplying (n,2n), (n,3n), etc. reactions.
  • The order of values (.coe) or value pairs (_res.m) is: \Sigma_{1,1} \, \Sigma_{1,2} \, ... \, \Sigma_{2,1} \, \Sigma_{2,2}  \, ... where \Sigma_{g,g'} refers to scattering from group g to g'.
  • The data in the _res.m file can be read into a G by G matrix with Matlab reshape-command, for example: reshape(B1_S0(idx,1:2:end), G, G).
Parameter Size Description
B1_S0 4G2 P0 scattering matrix
B1_S1 4G2 P1 scattering matrix
B1_S2 4G2 P2 scattering matrix
B1_S3 4G2 P3 scattering matrix
B1_S4 4G2 P4 scattering matrix
B1_S5 4G2 P5 scattering matrix
B1_S6 4G2 P6 scattering matrix
B1_S7 4G2 P7 scattering matrix
B1_SP0 4G2 P0 scattering production matrix
B1_SP1 4G2 P1 scattering production matrix
B1_SP2 4G2 P2 scattering production matrix
B1_SP3 4G2 P3 scattering production matrix
B1_SP4 4G2 P4 scattering production matrix
B1_SP5 4G2 P5 scattering production matrix
B1_SP6 4G2 P6 scattering production matrix
B1_SP7 4G2 P7 scattering production matrix

Diffusion parameters

Parameter Size Description
B1_TRANSPXS 2G Transport cross section (calculated from diffusion coefficient)
B1_DIFFCOEF 2G Diffusion coefficient

Poison cross sections

Notes:

  • Printed only if poison cross section option is on (see set poi).
Parameter Size Description
B1_I135_YIELD 2G Fission yield of I-135 (cumulative, includes all precursors)
B1_XE135_YIELD 2G Fission yield of Xe-135
B1_PM149_YIELD 2G Fission yield of Pm-149 (cumulative, includes all precursors)
B1_SM149_YIELD 2G Fission yield of Sm-149
B1_I135_MICRO_ABS 2G Microscopic absorption cross section of I-135
B1_XE135_MICRO_ABS 2G Microscopic absorption cross section of Xe-135
B1_PM149_MICRO_ABS 2G Microscopic absorption cross section of Pm-149
B1_SM149_MICRO_ABS 2G Microscopic absorption cross section of Sm-149
B1_XE135_MACRO_ABS 2G Macroscopic absorption cross section of Xe-135
B1_SM149_MACRO_ABS 2G Macroscopic absorption cross section of Sm-149

Delayed neutron data

Notes:

  • The output always consists of 9 values: total, followed by precursor group-wise values. If the number of groups is 6, the last two values are zero.
  • The actual number of groups depends on the cross section library used in the calculations. JEFF-3.1, JEFF.3.2 and later evaluations use 8 precursor groups, while earlier evaluations, as well as all ENDF/B and JENDL data is based on 6 groups.
Parameter Size Description
BETA_EFF 9 Effective delayed neutron fraction (currently calculated using the Meulekamp method)
LAMBDA 9 Decay constants

Assembly discontinuity factors

Notes:

  • Calculation of assembly discontinuity factors requires the set adf option.
  • Surface flux and current tallies are used to calculate the boundary currents and fluxes. Mid-point and corner values are approximated by integrating over a small surface segment.
  • Fluxes and currents are normalized average values.
  • When the homogenized region is surrounded by reflective boundary conditions (zero net-current) the homogeneous flux becomes flat and equal to the volume-averaged heterogeneous flux. When the net currents are non-zero, the homogeneous flux is obtained using the Built-in diffusion flux solver.
  • The calculation currently supports only a limited number of surface types: infinite planes and square and hexagonal prisms.
  • The order of surface and mid-point values for square prisms is: X_{\mathrm{W},1} \, X_{\mathrm{W},2} \, ... \, X_{\mathrm{S},1} \, X_{\mathrm{S},2} \, ... \, X_{\mathrm{E},1} \, X_{\mathrm{E},2} \, ... \, X_{\mathrm{N},1} \, X_{\mathrm{N},2} \, ... and the order of corner values: X_{\mathrm{NW},1} \, X_{\mathrm{NW},2} \, ... \, X_{\mathrm{NE},1} \, X_{\mathrm{NE},2} \, ... \, X_{\mathrm{SE},1} \, X_{\mathrm{SE},2} \, ... \, X_{\mathrm{SW},1} \, X_{\mathrm{SW},2} \, ... where X_{k,g} refers to parameter X on surface/corner k and energy group g.
  • The order of surface and mid-point values for hexagonal prims runs clockwise starting from the north (Y-type) or east (X-type) face. The corner values start from the next corner in clockwise direction.
  • Note to developers: the description may be wrong for for X-type hexagonal prism.
Parameter Size Description
DF_SURFACE (string) Name of the surface used for the calculation
DF_SYM 1 Symmetry option defined in the input
DF_N_SURF 1 Number of surface values (denoted as NS below)
DF_N_CORN 1 Number of corner values (denoted as NC below)
DF_VOLUME 1 Volume (3D) or cross sectional area (2D) of the homogenized cell
DF_SURF_AREA NS Area (3D) or perimeter length (2D) of the surface region
DF_MID_AREA NS Area (3D) or perimeter length (2D) of the mid-point region
DF_CORN_AREA NS Area (3D) or perimeter length (2D) of the corner region
DF_SURF_IN_CURR 2G \times NS Inward surface currents
DF_SURF_OUT_CURR 2G \times NS Outward surface currents
DF_SURF_NET_CURR 2G \times NS Net surface currents
DF_MID_IN_CURR 2G \times NS Inward mid-point currents
DF_MID_OUT_CURR 2G \times NS Outward mid-point currents
DF_MID_NET_CURR 2G \times NS Net mid-point currents
DF_CORN_IN_CURR 2G \times NC Inward corner currents
DF_CORN_OUT_CURR 2G \times NC Outward corner currents
DF_CORN_NET_CURR 2G \times NC Net corner currents
DF_HET_VOL_FLUX 2G Heterogeneous flux over homogenized cell
DF_HET_SURF_FLUX 2G \times NS Heterogeneous surface flux
DF_HET_CORN_FLUX 2G \times NC Heterogeneous corner flux
DF_HOM_VOL_FLUX 2G Homogeneous flux over homogenized cell
DF_HOM_SURF_FLUX 2G \times NC Homogeneous surface flux
DF_HOM_CORN_FLUX 2G \times NC Homogeneous corner flux
DF_SURF_DF 2G \times NC Surface discontinuity factors
DF_CORN_DF 2G \times NC Corner discontinuity factors

References

  1. ^ Liu, Z., Smith, K. and Forget, B. "A Cumulative Migration Method for Computing Rigorous Transport Cross Sections and Diffusion Coefficients for LWR Lattices with Monte Carlo." In proc. PHYSOR 2016, Sun Valley, Idaho, May 1-5, 2016.