Difference between revisions of "Validation and verification"
(→References) |
(→References) |
||
Line 463: | Line 463: | ||
<ref name="grgic1">Grgić, D., Jecmenica, R. and Pevec, D. ''"Lattice codes pin power prediction comparison."'' Nucl. Eng. Design, [http://www.sciencedirect.com/science/article/pii/S0029549311010089 246 (2012) 27-40].</ref> | <ref name="grgic1">Grgić, D., Jecmenica, R. and Pevec, D. ''"Lattice codes pin power prediction comparison."'' Nucl. Eng. Design, [http://www.sciencedirect.com/science/article/pii/S0029549311010089 246 (2012) 27-40].</ref> | ||
<ref name="herrero1">Herrero, J., Vasiliev, A., Pecchia, M., Ferroukhi, H. and Caruso, S. ''"Review calculations for the OECD/NEA Burn-up Credit Criticality Safety Benchmark."'' Ann. Nucl. Energy, [http://www.sciencedirect.com/science/article/pii/S0306454915004193 87 (2016) 48-57].</ref> | <ref name="herrero1">Herrero, J., Vasiliev, A., Pecchia, M., Ferroukhi, H. and Caruso, S. ''"Review calculations for the OECD/NEA Burn-up Credit Criticality Safety Benchmark."'' Ann. Nucl. Energy, [http://www.sciencedirect.com/science/article/pii/S0306454915004193 87 (2016) 48-57].</ref> | ||
− | <ref name="lahtinen1">Lahtinen, T. | + | <ref name="lahtinen1">Lahtinen, T. ''"Solution of the CB6 benchmark on VVER-440 final disposal using the Serpent reactor physics code."'' Kerntechnik, [http://www.hanser-elibrary.com/doi/abs/10.3139/124.110464 79 (2014) 303-313].</ref> |
<ref name="lopez1">Lopez-Solis, R., François, J., Bastida-Ortiz, G., Becker, M. and Sánchez-Espinoza, V. ''"Fuel depletion analysis of a small sodium fast reactor with KANEXT and SERPENT."'' Ann. Nucl. Energy, [http://www.sciencedirect.com/science/article/pii/S0306454916305837 98 (2016) 26-35].</ref> | <ref name="lopez1">Lopez-Solis, R., François, J., Bastida-Ortiz, G., Becker, M. and Sánchez-Espinoza, V. ''"Fuel depletion analysis of a small sodium fast reactor with KANEXT and SERPENT."'' Ann. Nucl. Energy, [http://www.sciencedirect.com/science/article/pii/S0306454916305837 98 (2016) 26-35].</ref> | ||
</references> | </references> |
Revision as of 11:06, 16 May 2017
This page collects together all documents related to Serpent validation. The different categories are listed below. Each entry should include one or several references to publicly accessible documents where the results are reported. If you have additional documentation related to an already listed case, you can just add the reference in the list.
Serpent input and output files can be also be provided. When the input consists of multiple files, link to zip or gzip archives.
Contents
Criticality
This section lists calculation cases from the International Handbook of Evaluated Criticality Safety Benchmark Experiments (ICSBEP)[1] and other sources. The main (but not only) purpose of the calculations is validation for criticality safety. The difference to experim
ICSBEP Criticality Benchmarks
ICSBEP ID | Experiment | Description | Results | Refs. | Files | Added by | Date |
---|---|---|---|---|---|---|---|
HEU-MET-FAST-001 | Godiva | Bare sphere of highly enriched uranium | keff, βeff | [2] | input | JLe / VTT | 2015/11/18 |
HEU-MET-FAST-002 | Topsy | Highly enriched uranium sphere surrounded by a thick reflector of natural uranium | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
PU-MET-FAST-001 | Jezebel | Bare sphere of plutonium | keff, βeff | [2] | input | JLe / VTT | 2015/11/18 |
PU-MET-FAST-006 | Popsy | Plutonium sphere surrounded by a thick reflector of natural uranium | keff, βeff | [2] | input | JLe / VTT | 2015/11/18 |
U233-MET-FAST-001 | Skidoo | Bare sphere of U-233 | keff, βeff | [2] | input | JLe / VTT | 2015/11/18 |
U233-MET-FAST-006 | Flattop23 | U-233 sphere surrounded by a thick reflector of natural uranium | keff, βeff | [2] | input | JLe / VTT | 2015/11/18 |
IEU-MET-FAST-007 | BigTen | Large all-uranium-metal cylindrical core surrounded by a thick reflector of natural uranium | keff, αR | [2] | N/A | JLe / VTT | 2015/11/18 |
IEU-MET-FAST-010 | ZPR-U9 | Cylindrical assembly of uranium metal with a thick depleted uranium reflector | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
MIX-MET-FAST-011 | ZPR-MOX | Cylindrical assembly of mixed fissile plutonium and uranium metal reflected by graphite | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
HEU-MET-INTER-001 | ZPR-HEU | Highly enriched uranium/iron cylinder reflected by stainless steel | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
PU-MET-INTER-002 | ZPR-Pu | Cylindrical plutonium/carbon/stainless steel assembly with stainless steel and iron reflectors | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
LEU-SOL-THERM-004 | Stacy-029, -033, -046 | Water-reflected cylindrical tank with uranyl nitrate solution | keff, αR | [2] | N/A | JLe / VTT | 2015/11/18 |
LEU-SOL-THERM-007 | Stacy-030 | Unreflected cylindrical tank with uranyl nitrate solution | keff, αR | [2] | N/A | JLe / VTT | 2015/11/18 |
LEU-SOL-THERM-016 | Stacy-125 | Water-reflected slabs of enriched uranyl nitrate solution | keff, αR | [2] | N/A | JLe / VTT | 2015/11/18 |
LEU-SOL-THERM-021 | Stacy-215 | Unreflected cylindrical tank of uranyl nitrate solution | keff, αR | [2] | N/A | JLe / VTT | 2015/11/18 |
Other Criticality Experiments
Experiment | Description | Results | Refs. | Files | Added by | Date |
---|---|---|---|---|---|---|
SNEAK-7A | Unmoderated PuO2/UO2 core with a depleted uranium reflector | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
SNEAK-7B | Unmoderated PuO2/UO2 core with a depleted uranium reflector | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
SNEAK-9C1 | Unmoderated core UO2 core with a depleted uranium reflector | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
SNEAK-9C2 | Unmoderated PuO2/UO2 core with Na and reflected by depleted uranium | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
Masurca-R2 | Unmoderated core with enriched uranium fuel surrounded by a UO2–Na mixture blanket and by steel shielding | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
Masurca-Z2 | Unmoderated core with plutonium and depleted uranium fuel surrounded by a UO2–Na mixture blanket and by steel shielding | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
FCA-XIX-1 | Highly enriched uranium core surrounded by UO2/Na and uranium metal blanket regions | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
FCA-XIX-2 | Plutonium/uranium core surrounded by UO2/Na and uranium metal blanket regions | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
FCA-XIX-3 | Plutonium core surrounded by UO2/Na and uranium metal blanket regions | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
TCA | Light water moderated low-enriched UO2 core in the tank-type critical assembly | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
IPEN | Low enriched UO2 fuel rods inside a light water filled tank | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
Winco | Slab tank assembly consisted of two thin coaxial slab tanks uranyl nitrate solution | keff, αR | [2] | N/A | JLe / VTT | 2015/11/18 |
Sheba-II | Enriched uranyl fluoride Solution High-Energy Burst Assembly (SHEBA) | keff, αR | [2] | N/A | JLe / VTT | 2015/11/18 |
SHE-8 | A hexagonal core with graphite matrix tubes and low enriched uranium fuel dispersed in graphite rods | keff, αR | [2] | N/A | JLe / VTT | 2015/11/18 |
Research reactors & other experiments
This section collects studies involving full-scale modelling of research reactors and other experimental facilities. The results may include criticality calculations, but also other reactor physics data (flux or power distributions, spectral indices, etc.). Experiments focused on criticality safety validation alone should be included in the section above.
Calculation case | Description | Refs. | Files | Added by | Date |
---|---|---|---|---|---|
Full-core burnup calculations for the OPAL research reactor | First six operating cycles simulated at INVAP with Serpent 2, and compared to experimental results | [3] | N/A | JLe / VTT | 2016/03/02 |
Triga Mark II benchmark experiments | Serpent 2 and MCNP calculations for the Triga Mark II reactor at JSI, Slovenia | [4] | N/A | JLe / VTT | 2016/09/16 |
FREYA fast critical experiments | Characterization of the critical VENUS-F cores (SCK.CEN, Belgium) with Serpent 2 in the framework of the FP7 EURATOM project FREYA | [5] | N/A | EF / HZDR | 2017/05/15 |
Prismatic HTGR critical assembly calculations | Reactor physics calculations for the VHTRC (JAEA, Japan) critical assembly using Serpent 2 and SCALE/KENO-VI | [6] | N/A | JLe / VTT | 2017/05/16 |
Pebble-bed HTGR critical assembly calculations | Criticality calculations for the ASTRA (Kurchatov Institute, Russia) critical assembly using Serpent 2 | [7] | N/A | JLe / VTT | 2017/05/16 |
VVER-1000 mock-up calculations | Criticality and other reactor physics calculations calculations for the LR-0 reactor (Rez, Czech Republic) using Serpent 2 | [8] | N/A | JLe / VTT | 2017/05/16 |
Burnup calculations
This section includes validation calculations involving fuel burnup. The results may include material compositions, criticality power distributions, etc. Since experimental data is scarce, also code-to-code comparisons may be included.
Calculation case | Description | Experimental data | Refs. | Files | Added by | Date |
---|---|---|---|---|---|---|
2D infinite-lattice PWR assembly burnup calculations (Krško NPP) | keff and pin-power distributions calculated using Serpent 1, DRAGON, FA2D and SCALE/NEWT | NO | [9] | N/A | JLe / VTT | 2017/05/16 |
Full-core GFR burnup calculations (Allegro) | keff, flux spectra and isotopic compositions calculated using Serpent 2 and MONTEBURNS | NO | [10] | N/A | JLe / VTT | 2017/05/16 |
Full-core SFR burnup calculations | keff , power distribution and isotopic compositions calculated using Serpent 2 and KANEXT | NO | [11] | N/A | JLe / VTT | 2017/05/16 |
OECD/NEA Burn-up Credit Criticality Safety Benchmark Phase VII calculations | keff and isotopic compositions calculated using Serpent 2 and MCNP6 | NO | [12] | N/A | JLe / VTT | 2017/05/16 |
CB6 benchmark on VVER-440 final disposal | Decay and criticality calculations, comparison between Serpent 2 and ORIGEN | NO | [13] | N/A | JLe / VTT | 2017/05/16 |
Reduced-order methods
This section is intended for validation studies in which Serpent-generated cross sections are used for nodal diffusion and other reduced-order calculations. The studies may include comparison to experimental data or reference Serpent 3D calculations. Also comparison of group constants calculated by Serpent vs. results by other codes can be included.
Full-core calculations
Calculation case | Code sequence | Description | Results | Refs. | Files | Added by | Date |
---|---|---|---|---|---|---|---|
MIT BEAVRS Benchmark | Serpent-ARES | 1000 MW PWR HZP initial core calculations using nodal diffusion code ARES | Power distributions | [14] | N/A | JLe / VTT | 2015/11/18 |
MIT BEAVRS Benchmark | Serpent-ARES | 1000 MW PWR HFP initial core and burnup calculations using nodal diffusion code ARES | Power distributions, control rod bank worths, boron dilution curve | [15] | input | JLe / VTT | 2016/08/26 |
Assembly-level code-to-code comparisons
Calculation case | Reference codes | Description | Refs. | Files | Added by | Date |
---|---|---|---|---|---|---|
Standard test cases run for each update | MCNP5 | PWR, BWR, CANDU, SFR and HTGR calculations using different cross section libraries | [16] | N/A | JLe / VTT | 2015/11/18 |
References
- ^ https://www.oecd-nea.org/science/wpncs/icsbep/handbook.html
- ^ Leppänen, J., Aufiero, M., Fridman, E., Rachamin, R., and van der Marck, S. "Calculation of effective point kinetics parameters in the Serpent 2 Monte Carlo code." Ann. Nucl. Energy, 65 (2014) 272-279.
- ^ Ferraro, D. and Villarion, E. "Full 3-D core calculations with refueling for the OPAL Research Reactor using Monte Carlo Code Serpent 2." Ann. Nucl. Energy, 92 (2016) 369-377.
- ^ Ćalić, D., Žerovnik, G. Trkov, A. and Snoj, L. "Validation of the Serpent 2 code on TRIGA Mark II benchmark experiments." Appl. Radiat. Isot., 107 (2016) 165-170.
- ^ Fridman, E., Kochetkov, A., and Krása, A. "Modeling of FREYA fast critical experiments with the Serpent Monte Carlo code." Ann. Nucl. Energy, 108 (2017) 239–252.
- ^ Bostelmann, F., Hammer H., Ortensi, J., Strydom G., Velkov, K. and Zwermann, W.. "Criticality calculations of the Very High Temperature Reactor Critical Assembly benchmark with Serpent and SCALE/KENO-VI." Ann. Nucl. Energy, 90 (2016) 343–352.
- ^ Rintala, V., Suikkanen, H., Leppänen, J. and Kyrki-Rajamäki, R. "Modeling of realistic pebble bed reactor geometries using the Serpent Monte Carlo code." Ann. Nucl. Energy, 77 (2015) 223-230.
- ^ Chersola, D., Mazzini, G., Kostal, M., Miglierini, B., Hrehor, M., Lomonaco, G., Borreani, W. and Ruscak, M. "Application of Serpent 2 and MCNP6 to study different criticality configurations of a VVER-1000 mock-up." Ann. Nucl. Energy, 94 (2016) 109-122.
- ^ Grgić, D., Jecmenica, R. and Pevec, D. "Lattice codes pin power prediction comparison." Nucl. Eng. Design, 246 (2012) 27-40.
- ^ Chersola, D., Lomonaco, G., Marotta, R. and Mazzini, G. "Comparison between SERPENT and MONTEBURNS codes applied to burnup calculations of a GFR-like configuration." Nucl. Eng. Design, 273 (2014) 542-554.
- ^ Lopez-Solis, R., François, J., Bastida-Ortiz, G., Becker, M. and Sánchez-Espinoza, V. "Fuel depletion analysis of a small sodium fast reactor with KANEXT and SERPENT." Ann. Nucl. Energy, 98 (2016) 26-35.
- ^ Herrero, J., Vasiliev, A., Pecchia, M., Ferroukhi, H. and Caruso, S. "Review calculations for the OECD/NEA Burn-up Credit Criticality Safety Benchmark." Ann. Nucl. Energy, 87 (2016) 48-57.
- ^ Lahtinen, T. "Solution of the CB6 benchmark on VVER-440 final disposal using the Serpent reactor physics code." Kerntechnik, 79 (2014) 303-313.
- ^ Leppänen, J., Mattila, R. and Pusa, M. "Validation of the Serpent-ARES code sequence using the MIT BEAVRS benchmark - Initial core at HZP conditions." Ann. Nucl. Energy, 69 (2014) 212-225.
- ^ Leppänen, J. and Mattila, R. "Validation of the Serpent-ARES code sequence using the MIT BEAVRS benchmark – HFP conditions and fuel cycle 1 simulation." Ann. Nucl. Energy, 96 (2016) 324-331.
- ^ Standard validation cases at Serpent website