Difference between revisions of "Validation and verification"
(→References) |
(Update external links) |
||
(51 intermediate revisions by 4 users not shown) | |||
Line 5: | Line 5: | ||
== Criticality == | == Criticality == | ||
− | This section lists calculation cases from the International Handbook of Evaluated Criticality Safety Benchmark Experiments (ICSBEP)<ref name="icsbep"/> and other sources. The main (but not only) purpose of the calculations is validation for criticality safety. | + | This section lists calculation cases from the International Handbook of Evaluated Criticality Safety Benchmark Experiments (ICSBEP)<ref name="icsbep"/> and other sources. The main (but not only) purpose of the calculations is validation for criticality safety. |
− | |||
=== ICSBEP Criticality Benchmarks === | === ICSBEP Criticality Benchmarks === | ||
Line 132: | Line 131: | ||
| k<sub>eff</sub>, α<sub>R</sub> | | k<sub>eff</sub>, α<sub>R</sub> | ||
| <ref name="ifp"/> | | <ref name="ifp"/> | ||
− | | | + | | [[LEU-SOL-THERM-007 | input]] |
| JLe / VTT | | JLe / VTT | ||
| 2015/11/18 | | 2015/11/18 | ||
Line 277: | Line 276: | ||
| JLe / VTT | | JLe / VTT | ||
| 2015/11/18 | | 2015/11/18 | ||
+ | |} | ||
+ | |||
+ | === Application Specific Validation === | ||
+ | |||
+ | {|class="wikitable" style="text-align: left;" | ||
+ | ! Application | ||
+ | ! Description | ||
+ | ! Results | ||
+ | ! Refs. | ||
+ | ! Files | ||
+ | ! Added by | ||
+ | ! Date | ||
+ | |- | ||
+ | | SNF wet storage (78 cases) | ||
+ | | Hexagonal fuel assemblies separated by borated steel and water. | ||
+ | | k<sub>eff</sub> | ||
+ | | <ref name="SerpentCritSafetyValidation17"/> | ||
+ | | N/A | ||
+ | | VVa / VTT | ||
+ | | 2017/05/02 | ||
|} | |} | ||
Line 332: | Line 351: | ||
| JLe / VTT | | JLe / VTT | ||
| 2017/05/16 | | 2017/05/16 | ||
+ | |- | ||
+ | | VENUS-2 Benchmark | ||
+ | | Criticality and power distribution, comparison to experimental data an MCNP calculations | ||
+ | | <ref name="calic1"/> | ||
+ | | N/A | ||
+ | | JLe / VTT | ||
+ | | 2022/05/22 | ||
+ | |- | ||
+ | | Reactor dosimetry calculations for FiR 1 Triga Mk-II reactor | ||
+ | | Comparison of predicted reaction rates of nickel and manganese at 9 different positions to measurements | ||
+ | | <ref name="fir1"/> | ||
+ | | N/A | ||
+ | | JLe / VTT | ||
+ | | 2022/05/23 | ||
+ | |- | ||
+ | | Criticality benchmarks for the Pavia Triga Mk-II reactor | ||
+ | | Comparison of multiplication factor and control rod calibration curves to measurements | ||
+ | | <ref name="pavia1"/> | ||
+ | | N/A | ||
+ | | JLe / VTT | ||
+ | | 2022/05/23 | ||
|} | |} | ||
Line 346: | Line 386: | ||
! Added by | ! Added by | ||
! Date | ! Date | ||
+ | |- | ||
+ | | LWR-PROTEUS Phase-II calculations | ||
+ | | Isotopic compositions calculated using Serpent 2, MCNPX and VESTA and compared to experimental data | ||
+ | | YES | ||
+ | | <ref name="peccia1"/> | ||
+ | | N/A | ||
+ | | JLe / VTT | ||
+ | | 2017/05/16 | ||
|- | |- | ||
| 2D infinite-lattice PWR assembly burnup calculations (Krško NPP) | | 2D infinite-lattice PWR assembly burnup calculations (Krško NPP) | ||
Line 387: | Line 435: | ||
| 2017/05/16 | | 2017/05/16 | ||
|- | |- | ||
+ | | AER VVER-440 GD Fuel Burnup Benchmark | ||
+ | | ''k''<sub>eff</sub> and isotopic compositions calculated using Serpent 2 and compared to benchmark reference results | ||
+ | | NO | ||
+ | | <ref name="lotsch1"/> | ||
+ | | N/A | ||
+ | | JLe / VTT | ||
+ | | 2017/05/16 | ||
+ | |- | ||
+ | | OECD/NEA benchmark for VVER-1000 fuel assembly with GD | ||
+ | | ''k''<sub>eff</sub> and isotopic compositions calculated using Serpent 2 and compared to benchmark reference results | ||
+ | | NO | ||
+ | | <ref name="lotsch1"/> | ||
+ | | N/A | ||
+ | | JLe / VTT | ||
+ | | 2017/05/16 | ||
+ | |- | ||
+ | | OECD/NEA benchmark for VVER-1000 fuel assembly with LEU and MOX fuel | ||
+ | | ''k''<sub>eff</sub>, reactivity coefficients and isotopic compositions calculated using Serpent 2 and SCALE, and compared to benchmark reference results | ||
+ | | NO | ||
+ | | <ref name="mercatali1"/> | ||
+ | | N/A | ||
+ | | JLe / VTT | ||
+ | | 2017/05/16 | ||
+ | |- | ||
+ | | OECD/NEA Burn-up Credit Criticality Safety Benchmark Phase III-C | ||
+ | | ''k''<sub>eff</sub>, isotopic compositions calculated for BWR assemblies with various codes including Serpent 2 with cross comparison. | ||
+ | | NO | ||
+ | | <ref name="P3C"/> | ||
+ | | N/A | ||
+ | | VVa / VTT | ||
+ | | 2020/08/25 | ||
+ | |- | ||
+ | | SKB Decay heat blind test benchmark | ||
+ | | Decay heat, mass of <sup>137</sup>Cs and <sup>148</sup>Nd | ||
+ | | YES | ||
+ | | <ref name="SKB1"/> | ||
+ | | N/A | ||
+ | | JLe / VTT | ||
+ | | 2022/05/13 | ||
+ | |} | ||
+ | |||
+ | == Dynamic simulations and transients == | ||
+ | |||
+ | This section includes validation calculations involving time-dependent neutronics and reactor transients. | ||
+ | |||
+ | {|class="wikitable" style="text-align: left;" | ||
+ | ! Calculation case | ||
+ | ! Description | ||
+ | ! Experimental data | ||
+ | ! Refs. | ||
+ | ! Files | ||
+ | ! Added by | ||
+ | ! Date | ||
+ | |- | ||
+ | | Serpent-SUBCHANFLOW calculations for the SPERT-IIIE hot full power tests | ||
+ | | Transient experiments T-84 and T-85 are calculated using pin-by-pin coupling and compared with experimental results | ||
+ | | YES | ||
+ | | <ref name="ferraro1"/> | ||
+ | | N/A | ||
+ | | JLe / VTT | ||
+ | | 2022/05/23 | ||
+ | |- | ||
+ | | Serpent-OpenFOAM calculations for the TREAT reactor | ||
+ | | TREAT M2 transient 2580 | ||
+ | | YES | ||
+ | | <ref name="sorrell1"/> | ||
+ | | N/A | ||
+ | | JLe / VTT | ||
+ | | 2022/05/23 | ||
+ | |} | ||
+ | |||
+ | == Fusion == | ||
+ | |||
+ | This section includes validation calculations for fusion applications. | ||
+ | |||
+ | {|class="wikitable" style="text-align: left;" | ||
+ | ! Calculation case | ||
+ | ! Description | ||
+ | ! Experimental data | ||
+ | ! Refs. | ||
+ | ! Files | ||
+ | ! Added by | ||
+ | ! Date | ||
+ | |- | ||
+ | | Variance reduction and shielding calculations for fusion applications | ||
+ | | SINBAD and EU DEMO HCPB, comparison to MCNP and experimental data | ||
+ | | YES | ||
+ | | <ref name="valentine1"/> | ||
+ | | N/A | ||
+ | | JLe / VTT | ||
+ | | 2022/05/23 | ||
+ | |- | ||
+ | | Serpent and MCNP calculations for the EU-DEMO BL2017 model | ||
+ | | EU DEMO HCPB breeding blanket | ||
+ | | NO | ||
+ | | <ref name="lu1"/> | ||
+ | | N/A | ||
+ | | JLe / VTT | ||
+ | | 2022/05/23 | ||
+ | |- | ||
+ | | Serpent and MCNP fusion neutronics analyses at JET | ||
+ | | Comparison of fluxes and reaction rates at several positions | ||
+ | | NO | ||
+ | | <ref name="zohar1"/> | ||
+ | | N/A | ||
+ | | JLe / VTT | ||
+ | | 2022/05/23 | ||
+ | |} | ||
+ | |||
+ | == Photon transport == | ||
+ | |||
+ | This section is intended for validation studies concerning the photon transport capabilities of Serpent. | ||
+ | |||
+ | {|class="wikitable" style="text-align: left;" | ||
+ | ! Calculation case | ||
+ | ! Description | ||
+ | ! Modelled cases | ||
+ | ! Refs. | ||
+ | ! Files | ||
+ | ! Added by | ||
+ | ! Date | ||
+ | |- | ||
+ | | Kansas <sup>60</sup>Co gamma-ray skyshine experiment | ||
+ | | <sup>60</sup>Co source placed in a horizontally shielded concrete silo with or without roofing. Exposure rates measured between 30 m and 700 m from the source. Comparisons to experimental data and MCNP6. | ||
+ | | Experiments 1, 2 and 3. | ||
+ | | <ref name="gammaVV17"/> | ||
+ | | N/A | ||
+ | | VVa / VTT | ||
+ | | 2017/01/27 | ||
+ | |- | ||
+ | | Hupmobile TLD experiment | ||
+ | | Dose rates from a <sup>137</sup>Cs source to TLDs inside a teflon cylinder. Comparisons to MCNP6, no experimental data. | ||
+ | | One experiment with a <sup>137</sup>Cs source. | ||
+ | | <ref name="gammaVV17"/> | ||
+ | | N/A | ||
+ | | VVa / VTT | ||
+ | | 2017/01/27 | ||
+ | |- | ||
+ | | Dose rate from irradiated PWR assemblies | ||
+ | | Benchmark calculation of gamma dose rate from 1 m distance of PWR-UOX and PWR-MOX assemblies | ||
+ | | UOX and MOX assembly 30 v and 3.7 v after irradiation. | ||
+ | | <ref name="EschbachGLOBAL17"/> | ||
+ | | N/A | ||
+ | | VVa / VTT | ||
+ | | 2021/01/28 | ||
+ | |- | ||
+ | | Radiation shielding for neutrons and photons | ||
+ | | ICSBEP ALARM-benchmarks | ||
+ | | ALARM-CF-FE-SHIELD-001 and ALARM-CF-PB-SHIELD-001 | ||
+ | | <ref name="hakkinen1"/> | ||
+ | | N/A | ||
+ | | JLe / VTT | ||
+ | | 2022/05/23 | ||
+ | |} | ||
+ | |||
+ | == Direct full core modelling (computational benchmark) == | ||
+ | |||
+ | This section is intended for code-to-code validation studies for direct full core (2D or 3D) modelling. | ||
+ | |||
+ | {|class="wikitable" style="text-align: left;" | ||
+ | ! Calculation case | ||
+ | ! Description | ||
+ | ! Modelled cases | ||
+ | ! Refs. | ||
+ | ! Files | ||
+ | ! Added by | ||
+ | ! Date | ||
+ | |- | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | |} | ||
+ | |||
+ | == Direct full core modelling (experimental data) == | ||
+ | |||
+ | |||
+ | This section is intended for code-to-code or code-to-experiment validation studies for direct full core (2D or 3D) modelling of real world reactors with experimental data available. | ||
+ | |||
+ | {|class="wikitable" style="text-align: left;" | ||
+ | ! Calculation case | ||
+ | ! Description | ||
+ | ! Modelled cases | ||
+ | ! Refs. | ||
+ | ! Files | ||
+ | ! Added by | ||
+ | ! Date | ||
+ | |- | ||
+ | | Khmelnitsky-2 (X2) benchmark | ||
+ | | Khmelnitsky-2 initial core loading at HZP state. Comparison to experimentally measured data. | ||
+ | | Measured critical state k-eff, critical boron, ITCs, SCRAM worths, CR group #10 differential and integral worth. | ||
+ | | <ref name="BilodidANE20_X2"/> | ||
+ | | - | ||
+ | | VVa / VTT | ||
+ | | 2021-06-24 | ||
|} | |} | ||
Line 419: | Line 665: | ||
| Power distributions, control rod bank worths, boron dilution curve | | Power distributions, control rod bank worths, boron dilution curve | ||
| <ref name="ares2"/> | | <ref name="ares2"/> | ||
− | | [ | + | | [[BEAVRS benchmark |input]] |
| JLe / VTT | | JLe / VTT | ||
| 2016/08/26 | | 2016/08/26 | ||
Line 449: | Line 695: | ||
<ref name="icsbep">https://www.oecd-nea.org/science/wpncs/icsbep/handbook.html</ref> | <ref name="icsbep">https://www.oecd-nea.org/science/wpncs/icsbep/handbook.html</ref> | ||
<ref name="ifp">Leppänen, J., Aufiero, M., Fridman, E., Rachamin, R., and van der Marck, S. ''"Calculation of effective point kinetics parameters in the Serpent 2 Monte Carlo code."'' Ann. Nucl. Energy, [http://www.sciencedirect.com/science/article/pii/S0306454913005628 65 (2014) 272-279].</ref> | <ref name="ifp">Leppänen, J., Aufiero, M., Fridman, E., Rachamin, R., and van der Marck, S. ''"Calculation of effective point kinetics parameters in the Serpent 2 Monte Carlo code."'' Ann. Nucl. Energy, [http://www.sciencedirect.com/science/article/pii/S0306454913005628 65 (2014) 272-279].</ref> | ||
− | <ref name=" | + | <ref name="SerpentCritSafetyValidation17">Valtavirta, V. ''"Criticality safety validation of Serpent for nuclear fuel wet storage calculations"'' Customer Report, [https://serpent.vtt.fi/download/VTT-CR-02424-17_web.pdf VTT-CR-02424-17 (link to report)] (2017).</ref> |
+ | <ref name="std1">[https://serpent.vtt.fi/validation/lattice_calculations/ Standard validation cases at Serpent website]</ref> | ||
<ref name="ares1">Leppänen, J., Mattila, R. and Pusa, M. ''"Validation of the Serpent-ARES code sequence using the MIT BEAVRS benchmark - Initial core at HZP conditions."'' Ann. Nucl. Energy, [http://www.sciencedirect.com/science/article/pii/S030645491400084X 69 (2014) 212-225].</ref> | <ref name="ares1">Leppänen, J., Mattila, R. and Pusa, M. ''"Validation of the Serpent-ARES code sequence using the MIT BEAVRS benchmark - Initial core at HZP conditions."'' Ann. Nucl. Energy, [http://www.sciencedirect.com/science/article/pii/S030645491400084X 69 (2014) 212-225].</ref> | ||
<ref name="ares2">Leppänen, J. and Mattila, R. ''"Validation of the Serpent-ARES code sequence using the MIT BEAVRS benchmark – HFP conditions and fuel cycle 1 simulation."'' Ann. Nucl. Energy, [http://www.sciencedirect.com/science/article/pii/S0306454916304121 96 (2016) 324-331].</ref> | <ref name="ares2">Leppänen, J. and Mattila, R. ''"Validation of the Serpent-ARES code sequence using the MIT BEAVRS benchmark – HFP conditions and fuel cycle 1 simulation."'' Ann. Nucl. Energy, [http://www.sciencedirect.com/science/article/pii/S0306454916304121 96 (2016) 324-331].</ref> | ||
<ref name="opal1">Ferraro, D. and Villarion, E. ''"Full 3-D core calculations with refueling for the OPAL Research Reactor using Monte Carlo Code Serpent 2."'' Ann. Nucl. Energy, [http://www.sciencedirect.com/science/article/pii/S0306454916300640 92 (2016) 369-377].</ref> | <ref name="opal1">Ferraro, D. and Villarion, E. ''"Full 3-D core calculations with refueling for the OPAL Research Reactor using Monte Carlo Code Serpent 2."'' Ann. Nucl. Energy, [http://www.sciencedirect.com/science/article/pii/S0306454916300640 92 (2016) 369-377].</ref> | ||
<ref name="triga1">Ćalić, D., Žerovnik, G. Trkov, A. and Snoj, L. ''"Validation of the Serpent 2 code on TRIGA Mark II benchmark experiments."'' Appl. Radiat. Isot., [http://www.sciencedirect.com/science/article/pii/S0969804315302165 107 (2016) 165-170].</ref> | <ref name="triga1">Ćalić, D., Žerovnik, G. Trkov, A. and Snoj, L. ''"Validation of the Serpent 2 code on TRIGA Mark II benchmark experiments."'' Appl. Radiat. Isot., [http://www.sciencedirect.com/science/article/pii/S0969804315302165 107 (2016) 165-170].</ref> | ||
+ | <ref name="fir1">Viitanen, T. and Leppänen, J. ''"Validating the Serpent Model of FiR 1 Triga Mk-II Reactor by Means of Reactor Dosimetry."'' EJP Web conferences, [https://doi.org/10.1051/epjconf/201610603010 106 (2016) 03010].</ref> | ||
<ref name="freya1">Fridman, E., Kochetkov, A., and Krása, A. ''"Modeling of FREYA fast critical experiments with the Serpent Monte Carlo code."'' Ann. Nucl. Energy, [http://www.sciencedirect.com/science/article/pii/S0306454917300488 108 (2017) 239–252].</ref> | <ref name="freya1">Fridman, E., Kochetkov, A., and Krása, A. ''"Modeling of FREYA fast critical experiments with the Serpent Monte Carlo code."'' Ann. Nucl. Energy, [http://www.sciencedirect.com/science/article/pii/S0306454917300488 108 (2017) 239–252].</ref> | ||
<ref name="bostelmann1">Bostelmann, F., Hammer H., Ortensi, J., Strydom G., Velkov, K. and Zwermann, W.. ''"Criticality calculations of the Very High Temperature Reactor Critical | <ref name="bostelmann1">Bostelmann, F., Hammer H., Ortensi, J., Strydom G., Velkov, K. and Zwermann, W.. ''"Criticality calculations of the Very High Temperature Reactor Critical | ||
Line 461: | Line 709: | ||
configurations of a VVER-1000 mock-up."'' Ann. Nucl. Energy, [http://www.sciencedirect.com/science/article/pii/S0306454916301086 94 (2016) 109-122].</ref> | configurations of a VVER-1000 mock-up."'' Ann. Nucl. Energy, [http://www.sciencedirect.com/science/article/pii/S0306454916301086 94 (2016) 109-122].</ref> | ||
<ref name="chersola2">Chersola, D., Lomonaco, G., Marotta, R. and Mazzini, G. ''"Comparison between SERPENT and MONTEBURNS codes applied to burnup calculations of a GFR-like configuration."'' Nucl. Eng. Design, [http://www.sciencedirect.com/science/article/pii/S0029549314001964 273 (2014) 542-554].</ref> | <ref name="chersola2">Chersola, D., Lomonaco, G., Marotta, R. and Mazzini, G. ''"Comparison between SERPENT and MONTEBURNS codes applied to burnup calculations of a GFR-like configuration."'' Nucl. Eng. Design, [http://www.sciencedirect.com/science/article/pii/S0029549314001964 273 (2014) 542-554].</ref> | ||
+ | <ref name="calic1">Ćalić, D., Štancar, Ž. and Snoj, L. ''"Analysis of VENUS-2 benchmark using Serpent 2 code."'' Ann. Nucl. Energy., [https://doi.org/10.1016/j.anucene.2018.02.051 116 (2018) 334-346].</ref> | ||
<ref name="grgic1">Grgić, D., Jecmenica, R. and Pevec, D. ''"Lattice codes pin power prediction comparison."'' Nucl. Eng. Design, [http://www.sciencedirect.com/science/article/pii/S0029549311010089 246 (2012) 27-40].</ref> | <ref name="grgic1">Grgić, D., Jecmenica, R. and Pevec, D. ''"Lattice codes pin power prediction comparison."'' Nucl. Eng. Design, [http://www.sciencedirect.com/science/article/pii/S0029549311010089 246 (2012) 27-40].</ref> | ||
<ref name="herrero1">Herrero, J., Vasiliev, A., Pecchia, M., Ferroukhi, H. and Caruso, S. ''"Review calculations for the OECD/NEA Burn-up Credit Criticality Safety Benchmark."'' Ann. Nucl. Energy, [http://www.sciencedirect.com/science/article/pii/S0306454915004193 87 (2016) 48-57].</ref> | <ref name="herrero1">Herrero, J., Vasiliev, A., Pecchia, M., Ferroukhi, H. and Caruso, S. ''"Review calculations for the OECD/NEA Burn-up Credit Criticality Safety Benchmark."'' Ann. Nucl. Energy, [http://www.sciencedirect.com/science/article/pii/S0306454915004193 87 (2016) 48-57].</ref> | ||
− | <ref name="lahtinen1">Lahtinen, T. | + | <ref name="SKB1">Jansson, P. et al. ''"Blind Benchmark Exercise for Spent Nuclear Fuel Decay Heat."'' Nucl. Sci. Eng. [https://doi.org/10.1080/00295639.2022.2053489 (preprint, 2022)]</ref> |
− | <ref name="lopez1">Lopez-Solis, R., François, J., Bastida-Ortiz, G., Becker, M. and Sánchez-Espinoza, V. | + | <ref name="lahtinen1">Lahtinen, T. ''"Solution of the CB6 benchmark on VVER-440 final disposal using the Serpent reactor physics code."'' Kerntechnik, [http://www.hanser-elibrary.com/doi/abs/10.3139/124.110464 79 (2014) 303-313]</ref> |
+ | <ref name="lopez1">Lopez-Solis, R., François, J., Bastida-Ortiz, G., Becker, M. and Sánchez-Espinoza, V. ''"Fuel depletion analysis of a small sodium fast reactor with KANEXT and SERPENT."'' Ann. Nucl. Energy, [http://www.sciencedirect.com/science/article/pii/S0306454916305837 98 (2016) 26-35].</ref> | ||
+ | <ref name="lotsch1">Lötsch, T. ''"Fuel assembly burnup calculations for VVER fuel assemblies with the MONTE CARLO code SERPENT."'' Kerntechnik, [http://www.hanser-elibrary.com/doi/abs/10.3139/124.110455 79 (2014) 295-302].</ref> | ||
+ | <ref name="mercatali1">Mercatali, L., Venturini, A., Daeubler, M. and Sanchez, V. ''"SCALE and SERPENT solutions of the OECD VVER-1000 LEU and MOX burnup computational benchmark."'' Ann. Nucl. Energy, [http://www.sciencedirect.com/science/article/pii/S030645491500170X 83 (2015) 328-341].</ref> | ||
+ | <ref name="peccia1">Pecchia, M., Wicaksono, D., Grimm, P., Vasilieva, A., Perret, G., Ferroukhi, H and Pautza, A. ''"Validation of Monte Carlo based burnup codes against LWR-PROTEUS Phase-II experimental data."'' Ann. Nucl. Energy, [http://www.sciencedirect.com/science/article/pii/S0306454916304911 97 (2016) 153-164].</ref> | ||
+ | <ref name="gammaVV17"> Valtavirta, V. and Tuominen, R. ''"Validation and verification of the photon transport capabilities in Serpent 2.1.27"'' Research Report, [https://serpent.vtt.fi/download/VTT-R-00494-17_web.pdf VTT-R-00494-17 (link to report)] (2017). </ref> | ||
+ | <ref name="P3C"> OECD/NEA '"Burn-up Credit Criticality Safety Benchmark Phase III-C "', NEA/NSC/R/(2015)6, [https://www.oecd-nea.org/science/docs/2015/nsc-r2015-6.pdf (link to report)]</ref> | ||
+ | <ref name="EschbachGLOBAL17"> Eschbach, R., Feng, B., Vezzoni, B., Gabrielli, F., Alvarez-Velarde, F., Léger, V., Rocchi, F., Edwards, G., Dixon, B., Pénéliau, Y., Girieud, R., Häkkinen, S., Viitanen, T., Räty, A., Malambu, E.M. and Cornet, S. ''"Verification of Dose Rate Calculations for PWR Spent Fuel Assemblies"'', proceedings of GLOBAL 2017 (paper A-081), September 24-29, 2017, Seoul, Korea. </ref> | ||
+ | <ref name="BilodidANE20_X2"> Bilodid Y., Fridman E., Lötsch, T. ''"X2 VVER-1000 benchmark revision: Fresh HZP core state and the reference Monte Carlo solution"'' Ann. Nucl. Energy, [https://doi.org/10.1016/j.anucene.2020.107558 144 (2020) 107558]</ref> | ||
+ | <ref name="hakkinen1"> Häkkinen, S. ''"Serpent 2 Validation for Radiation Shielding Applications."'' ASME J. of Nuclear Rad Sci., [https://doi.org/10.1115/1.4051614 8 (2022) 042001].</ref> | ||
+ | <ref name="pavia1"> Castagna, C., Chiesa, D., Cammi, A., Boarin, S., Previtali, E., Sisti, M., Nastasi, M., Salvini, A., Magrotti, G. and Prata, M. ''"A new model with Serpent for the first criticality benchmarks of the TRIGA Mark II reactor."'' Ann. Nucl. Energy, [https://doi.org/10.1016/j.anucene.2017.11.011 113 (2018) 171-176].</ref> | ||
+ | <ref name="ferraro1"> Ferraro, D., García, M., Valtavirta, V., Imke, U., Tuominen, R., Leppänen, J. and Sanchez-Espinoza, V. ''"Serpent/SUBCHANFLOW pin-by-pin coupled transient calculations for the SPERT-IIIE hot full power tests."'' Ann. Nucl. Energy, [https://doi.org/10.1016/j.anucene.2020.107387 142 (2020) 107387].</ref> | ||
+ | <ref name="sorrell1"> Sorrell, N. and Hawari, A. ''"TREAT M2 experiment modeling for transient benchmark analysis."'' Ann. Nucl. Energy, [https://doi.org/10.1016/j.anucene.2019.01.026 128 (2019) 398-405].</ref> | ||
+ | <ref name="valentine1"> Valentine, A., Worral, R. and Leppänen, J. ''"Investigation of novel weight window methods in Serpent 2 for fusion neutronics applications."'' Fusion Eng. Design, [https://doi.org/10.1016/j.fusengdes.2022.113090 178 (2022) 113090].</ref> | ||
+ | <ref name="lu1">Lu, Y., Zhou, G., Hernández, F., Pereslavtsev, P., Leppänen, J. and Ye, M. ''"Benchmark of Serpent-2 with MCNP: Application to European DEMO HCPB breeding blanket."'' Fusion Eng. Design, [https://doi.org/10.1016/j.fusengdes.2020.111583 155 (2020) 111583].</ref> | ||
+ | <ref name="zohar1">Žohar, A., Štancar1, Z., Batistoni, P., Conroy, S., Snoj, L. and Lengar, I. ''"Validation of Serpent for Fusion neutronics analysis at JET."'' EJP Web Conference (PHYSOR 2020), [https://doi.org/10.1051/epjconf/202124718001 247 (2021) 18001].</ref> | ||
+ | |||
</references> | </references> | ||
+ | |||
+ | [[Category:Validation and verification|*]] |
Latest revision as of 07:01, 9 October 2024
This page collects together all documents related to Serpent validation. The different categories are listed below. Each entry should include one or several references to publicly accessible documents where the results are reported. If you have additional documentation related to an already listed case, you can just add the reference in the list.
Serpent input and output files can be also be provided. When the input consists of multiple files, link to zip or gzip archives.
Contents
Criticality
This section lists calculation cases from the International Handbook of Evaluated Criticality Safety Benchmark Experiments (ICSBEP)[1] and other sources. The main (but not only) purpose of the calculations is validation for criticality safety.
ICSBEP Criticality Benchmarks
ICSBEP ID | Experiment | Description | Results | Refs. | Files | Added by | Date |
---|---|---|---|---|---|---|---|
HEU-MET-FAST-001 | Godiva | Bare sphere of highly enriched uranium | keff, βeff | [2] | input | JLe / VTT | 2015/11/18 |
HEU-MET-FAST-002 | Topsy | Highly enriched uranium sphere surrounded by a thick reflector of natural uranium | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
PU-MET-FAST-001 | Jezebel | Bare sphere of plutonium | keff, βeff | [2] | input | JLe / VTT | 2015/11/18 |
PU-MET-FAST-006 | Popsy | Plutonium sphere surrounded by a thick reflector of natural uranium | keff, βeff | [2] | input | JLe / VTT | 2015/11/18 |
U233-MET-FAST-001 | Skidoo | Bare sphere of U-233 | keff, βeff | [2] | input | JLe / VTT | 2015/11/18 |
U233-MET-FAST-006 | Flattop23 | U-233 sphere surrounded by a thick reflector of natural uranium | keff, βeff | [2] | input | JLe / VTT | 2015/11/18 |
IEU-MET-FAST-007 | BigTen | Large all-uranium-metal cylindrical core surrounded by a thick reflector of natural uranium | keff, αR | [2] | N/A | JLe / VTT | 2015/11/18 |
IEU-MET-FAST-010 | ZPR-U9 | Cylindrical assembly of uranium metal with a thick depleted uranium reflector | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
MIX-MET-FAST-011 | ZPR-MOX | Cylindrical assembly of mixed fissile plutonium and uranium metal reflected by graphite | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
HEU-MET-INTER-001 | ZPR-HEU | Highly enriched uranium/iron cylinder reflected by stainless steel | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
PU-MET-INTER-002 | ZPR-Pu | Cylindrical plutonium/carbon/stainless steel assembly with stainless steel and iron reflectors | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
LEU-SOL-THERM-004 | Stacy-029, -033, -046 | Water-reflected cylindrical tank with uranyl nitrate solution | keff, αR | [2] | N/A | JLe / VTT | 2015/11/18 |
LEU-SOL-THERM-007 | Stacy-030 | Unreflected cylindrical tank with uranyl nitrate solution | keff, αR | [2] | input | JLe / VTT | 2015/11/18 |
LEU-SOL-THERM-016 | Stacy-125 | Water-reflected slabs of enriched uranyl nitrate solution | keff, αR | [2] | N/A | JLe / VTT | 2015/11/18 |
LEU-SOL-THERM-021 | Stacy-215 | Unreflected cylindrical tank of uranyl nitrate solution | keff, αR | [2] | N/A | JLe / VTT | 2015/11/18 |
Other Criticality Experiments
Experiment | Description | Results | Refs. | Files | Added by | Date |
---|---|---|---|---|---|---|
SNEAK-7A | Unmoderated PuO2/UO2 core with a depleted uranium reflector | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
SNEAK-7B | Unmoderated PuO2/UO2 core with a depleted uranium reflector | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
SNEAK-9C1 | Unmoderated core UO2 core with a depleted uranium reflector | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
SNEAK-9C2 | Unmoderated PuO2/UO2 core with Na and reflected by depleted uranium | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
Masurca-R2 | Unmoderated core with enriched uranium fuel surrounded by a UO2–Na mixture blanket and by steel shielding | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
Masurca-Z2 | Unmoderated core with plutonium and depleted uranium fuel surrounded by a UO2–Na mixture blanket and by steel shielding | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
FCA-XIX-1 | Highly enriched uranium core surrounded by UO2/Na and uranium metal blanket regions | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
FCA-XIX-2 | Plutonium/uranium core surrounded by UO2/Na and uranium metal blanket regions | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
FCA-XIX-3 | Plutonium core surrounded by UO2/Na and uranium metal blanket regions | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
TCA | Light water moderated low-enriched UO2 core in the tank-type critical assembly | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
IPEN | Low enriched UO2 fuel rods inside a light water filled tank | keff, βeff | [2] | N/A | JLe / VTT | 2015/11/18 |
Winco | Slab tank assembly consisted of two thin coaxial slab tanks uranyl nitrate solution | keff, αR | [2] | N/A | JLe / VTT | 2015/11/18 |
Sheba-II | Enriched uranyl fluoride Solution High-Energy Burst Assembly (SHEBA) | keff, αR | [2] | N/A | JLe / VTT | 2015/11/18 |
SHE-8 | A hexagonal core with graphite matrix tubes and low enriched uranium fuel dispersed in graphite rods | keff, αR | [2] | N/A | JLe / VTT | 2015/11/18 |
Application Specific Validation
Application | Description | Results | Refs. | Files | Added by | Date |
---|---|---|---|---|---|---|
SNF wet storage (78 cases) | Hexagonal fuel assemblies separated by borated steel and water. | keff | [3] | N/A | VVa / VTT | 2017/05/02 |
Research reactors & other experiments
This section collects studies involving full-scale modelling of research reactors and other experimental facilities. The results may include criticality calculations, but also other reactor physics data (flux or power distributions, spectral indices, etc.). Experiments focused on criticality safety validation alone should be included in the section above.
Calculation case | Description | Refs. | Files | Added by | Date |
---|---|---|---|---|---|
Full-core burnup calculations for the OPAL research reactor | First six operating cycles simulated at INVAP with Serpent 2, and compared to experimental results | [4] | N/A | JLe / VTT | 2016/03/02 |
Triga Mark II benchmark experiments | Serpent 2 and MCNP calculations for the Triga Mark II reactor at JSI, Slovenia | [5] | N/A | JLe / VTT | 2016/09/16 |
FREYA fast critical experiments | Characterization of the critical VENUS-F cores (SCK.CEN, Belgium) with Serpent 2 in the framework of the FP7 EURATOM project FREYA | [6] | N/A | EF / HZDR | 2017/05/15 |
Prismatic HTGR critical assembly calculations | Reactor physics calculations for the VHTRC (JAEA, Japan) critical assembly using Serpent 2 and SCALE/KENO-VI | [7] | N/A | JLe / VTT | 2017/05/16 |
Pebble-bed HTGR critical assembly calculations | Criticality calculations for the ASTRA (Kurchatov Institute, Russia) critical assembly using Serpent 2 | [8] | N/A | JLe / VTT | 2017/05/16 |
VVER-1000 mock-up calculations | Criticality and other reactor physics calculations calculations for the LR-0 reactor (Rez, Czech Republic) using Serpent 2 | [9] | N/A | JLe / VTT | 2017/05/16 |
VENUS-2 Benchmark | Criticality and power distribution, comparison to experimental data an MCNP calculations | [10] | N/A | JLe / VTT | 2022/05/22 |
Reactor dosimetry calculations for FiR 1 Triga Mk-II reactor | Comparison of predicted reaction rates of nickel and manganese at 9 different positions to measurements | [11] | N/A | JLe / VTT | 2022/05/23 |
Criticality benchmarks for the Pavia Triga Mk-II reactor | Comparison of multiplication factor and control rod calibration curves to measurements | [12] | N/A | JLe / VTT | 2022/05/23 |
Burnup calculations
This section includes validation calculations involving fuel burnup. The results may include material compositions, criticality power distributions, etc. Since experimental data is scarce, also code-to-code comparisons may be included.
Calculation case | Description | Experimental data | Refs. | Files | Added by | Date |
---|---|---|---|---|---|---|
LWR-PROTEUS Phase-II calculations | Isotopic compositions calculated using Serpent 2, MCNPX and VESTA and compared to experimental data | YES | [13] | N/A | JLe / VTT | 2017/05/16 |
2D infinite-lattice PWR assembly burnup calculations (Krško NPP) | keff and pin-power distributions calculated using Serpent 1, DRAGON, FA2D and SCALE/NEWT | NO | [14] | N/A | JLe / VTT | 2017/05/16 |
Full-core GFR burnup calculations (Allegro) | keff, flux spectra and isotopic compositions calculated using Serpent 2 and MONTEBURNS | NO | [15] | N/A | JLe / VTT | 2017/05/16 |
Full-core SFR burnup calculations | keff , power distribution and isotopic compositions calculated using Serpent 2 and KANEXT | NO | [16] | N/A | JLe / VTT | 2017/05/16 |
OECD/NEA Burn-up Credit Criticality Safety Benchmark Phase VII calculations | keff and isotopic compositions calculated using Serpent 2 and MCNP6 | NO | [17] | N/A | JLe / VTT | 2017/05/16 |
CB6 benchmark on VVER-440 final disposal | Decay and criticality calculations, comparison between Serpent 2 and ORIGEN | NO | [18] | N/A | JLe / VTT | 2017/05/16 |
AER VVER-440 GD Fuel Burnup Benchmark | keff and isotopic compositions calculated using Serpent 2 and compared to benchmark reference results | NO | [19] | N/A | JLe / VTT | 2017/05/16 |
OECD/NEA benchmark for VVER-1000 fuel assembly with GD | keff and isotopic compositions calculated using Serpent 2 and compared to benchmark reference results | NO | [19] | N/A | JLe / VTT | 2017/05/16 |
OECD/NEA benchmark for VVER-1000 fuel assembly with LEU and MOX fuel | keff, reactivity coefficients and isotopic compositions calculated using Serpent 2 and SCALE, and compared to benchmark reference results | NO | [20] | N/A | JLe / VTT | 2017/05/16 |
OECD/NEA Burn-up Credit Criticality Safety Benchmark Phase III-C | keff, isotopic compositions calculated for BWR assemblies with various codes including Serpent 2 with cross comparison. | NO | [21] | N/A | VVa / VTT | 2020/08/25 |
SKB Decay heat blind test benchmark | Decay heat, mass of 137Cs and 148Nd | YES | [22] | N/A | JLe / VTT | 2022/05/13 |
Dynamic simulations and transients
This section includes validation calculations involving time-dependent neutronics and reactor transients.
Calculation case | Description | Experimental data | Refs. | Files | Added by | Date |
---|---|---|---|---|---|---|
Serpent-SUBCHANFLOW calculations for the SPERT-IIIE hot full power tests | Transient experiments T-84 and T-85 are calculated using pin-by-pin coupling and compared with experimental results | YES | [23] | N/A | JLe / VTT | 2022/05/23 |
Serpent-OpenFOAM calculations for the TREAT reactor | TREAT M2 transient 2580 | YES | [24] | N/A | JLe / VTT | 2022/05/23 |
Fusion
This section includes validation calculations for fusion applications.
Calculation case | Description | Experimental data | Refs. | Files | Added by | Date |
---|---|---|---|---|---|---|
Variance reduction and shielding calculations for fusion applications | SINBAD and EU DEMO HCPB, comparison to MCNP and experimental data | YES | [25] | N/A | JLe / VTT | 2022/05/23 |
Serpent and MCNP calculations for the EU-DEMO BL2017 model | EU DEMO HCPB breeding blanket | NO | [26] | N/A | JLe / VTT | 2022/05/23 |
Serpent and MCNP fusion neutronics analyses at JET | Comparison of fluxes and reaction rates at several positions | NO | [27] | N/A | JLe / VTT | 2022/05/23 |
Photon transport
This section is intended for validation studies concerning the photon transport capabilities of Serpent.
Calculation case | Description | Modelled cases | Refs. | Files | Added by | Date |
---|---|---|---|---|---|---|
Kansas 60Co gamma-ray skyshine experiment | 60Co source placed in a horizontally shielded concrete silo with or without roofing. Exposure rates measured between 30 m and 700 m from the source. Comparisons to experimental data and MCNP6. | Experiments 1, 2 and 3. | [28] | N/A | VVa / VTT | 2017/01/27 |
Hupmobile TLD experiment | Dose rates from a 137Cs source to TLDs inside a teflon cylinder. Comparisons to MCNP6, no experimental data. | One experiment with a 137Cs source. | [28] | N/A | VVa / VTT | 2017/01/27 |
Dose rate from irradiated PWR assemblies | Benchmark calculation of gamma dose rate from 1 m distance of PWR-UOX and PWR-MOX assemblies | UOX and MOX assembly 30 v and 3.7 v after irradiation. | [29] | N/A | VVa / VTT | 2021/01/28 |
Radiation shielding for neutrons and photons | ICSBEP ALARM-benchmarks | ALARM-CF-FE-SHIELD-001 and ALARM-CF-PB-SHIELD-001 | [30] | N/A | JLe / VTT | 2022/05/23 |
Direct full core modelling (computational benchmark)
This section is intended for code-to-code validation studies for direct full core (2D or 3D) modelling.
Calculation case | Description | Modelled cases | Refs. | Files | Added by | Date |
---|---|---|---|---|---|---|
Direct full core modelling (experimental data)
This section is intended for code-to-code or code-to-experiment validation studies for direct full core (2D or 3D) modelling of real world reactors with experimental data available.
Calculation case | Description | Modelled cases | Refs. | Files | Added by | Date |
---|---|---|---|---|---|---|
Khmelnitsky-2 (X2) benchmark | Khmelnitsky-2 initial core loading at HZP state. Comparison to experimentally measured data. | Measured critical state k-eff, critical boron, ITCs, SCRAM worths, CR group #10 differential and integral worth. | [31] | - | VVa / VTT | 2021-06-24 |
Reduced-order methods
This section is intended for validation studies in which Serpent-generated cross sections are used for nodal diffusion and other reduced-order calculations. The studies may include comparison to experimental data or reference Serpent 3D calculations. Also comparison of group constants calculated by Serpent vs. results by other codes can be included.
Full-core calculations
Calculation case | Code sequence | Description | Results | Refs. | Files | Added by | Date |
---|---|---|---|---|---|---|---|
MIT BEAVRS Benchmark | Serpent-ARES | 1000 MW PWR HZP initial core calculations using nodal diffusion code ARES | Power distributions | [32] | N/A | JLe / VTT | 2015/11/18 |
MIT BEAVRS Benchmark | Serpent-ARES | 1000 MW PWR HFP initial core and burnup calculations using nodal diffusion code ARES | Power distributions, control rod bank worths, boron dilution curve | [33] | input | JLe / VTT | 2016/08/26 |
Assembly-level code-to-code comparisons
Calculation case | Reference codes | Description | Refs. | Files | Added by | Date |
---|---|---|---|---|---|---|
Standard test cases run for each update | MCNP5 | PWR, BWR, CANDU, SFR and HTGR calculations using different cross section libraries | [34] | N/A | JLe / VTT | 2015/11/18 |
References
- ^ https://www.oecd-nea.org/science/wpncs/icsbep/handbook.html
- ^ Leppänen, J., Aufiero, M., Fridman, E., Rachamin, R., and van der Marck, S. "Calculation of effective point kinetics parameters in the Serpent 2 Monte Carlo code." Ann. Nucl. Energy, 65 (2014) 272-279.
- ^ Valtavirta, V. "Criticality safety validation of Serpent for nuclear fuel wet storage calculations" Customer Report, VTT-CR-02424-17 (link to report) (2017).
- ^ Ferraro, D. and Villarion, E. "Full 3-D core calculations with refueling for the OPAL Research Reactor using Monte Carlo Code Serpent 2." Ann. Nucl. Energy, 92 (2016) 369-377.
- ^ Ćalić, D., Žerovnik, G. Trkov, A. and Snoj, L. "Validation of the Serpent 2 code on TRIGA Mark II benchmark experiments." Appl. Radiat. Isot., 107 (2016) 165-170.
- ^ Fridman, E., Kochetkov, A., and Krása, A. "Modeling of FREYA fast critical experiments with the Serpent Monte Carlo code." Ann. Nucl. Energy, 108 (2017) 239–252.
- ^ Bostelmann, F., Hammer H., Ortensi, J., Strydom G., Velkov, K. and Zwermann, W.. "Criticality calculations of the Very High Temperature Reactor Critical Assembly benchmark with Serpent and SCALE/KENO-VI." Ann. Nucl. Energy, 90 (2016) 343–352.
- ^ Rintala, V., Suikkanen, H., Leppänen, J. and Kyrki-Rajamäki, R. "Modeling of realistic pebble bed reactor geometries using the Serpent Monte Carlo code." Ann. Nucl. Energy, 77 (2015) 223-230.
- ^ Chersola, D., Mazzini, G., Kostal, M., Miglierini, B., Hrehor, M., Lomonaco, G., Borreani, W. and Ruscak, M. "Application of Serpent 2 and MCNP6 to study different criticality configurations of a VVER-1000 mock-up." Ann. Nucl. Energy, 94 (2016) 109-122.
- ^ Ćalić, D., Štancar, Ž. and Snoj, L. "Analysis of VENUS-2 benchmark using Serpent 2 code." Ann. Nucl. Energy., 116 (2018) 334-346.
- ^ Viitanen, T. and Leppänen, J. "Validating the Serpent Model of FiR 1 Triga Mk-II Reactor by Means of Reactor Dosimetry." EJP Web conferences, 106 (2016) 03010.
- ^ Castagna, C., Chiesa, D., Cammi, A., Boarin, S., Previtali, E., Sisti, M., Nastasi, M., Salvini, A., Magrotti, G. and Prata, M. "A new model with Serpent for the first criticality benchmarks of the TRIGA Mark II reactor." Ann. Nucl. Energy, 113 (2018) 171-176.
- ^ Pecchia, M., Wicaksono, D., Grimm, P., Vasilieva, A., Perret, G., Ferroukhi, H and Pautza, A. "Validation of Monte Carlo based burnup codes against LWR-PROTEUS Phase-II experimental data." Ann. Nucl. Energy, 97 (2016) 153-164.
- ^ Grgić, D., Jecmenica, R. and Pevec, D. "Lattice codes pin power prediction comparison." Nucl. Eng. Design, 246 (2012) 27-40.
- ^ Chersola, D., Lomonaco, G., Marotta, R. and Mazzini, G. "Comparison between SERPENT and MONTEBURNS codes applied to burnup calculations of a GFR-like configuration." Nucl. Eng. Design, 273 (2014) 542-554.
- ^ Lopez-Solis, R., François, J., Bastida-Ortiz, G., Becker, M. and Sánchez-Espinoza, V. "Fuel depletion analysis of a small sodium fast reactor with KANEXT and SERPENT." Ann. Nucl. Energy, 98 (2016) 26-35.
- ^ Herrero, J., Vasiliev, A., Pecchia, M., Ferroukhi, H. and Caruso, S. "Review calculations for the OECD/NEA Burn-up Credit Criticality Safety Benchmark." Ann. Nucl. Energy, 87 (2016) 48-57.
- ^ Lahtinen, T. "Solution of the CB6 benchmark on VVER-440 final disposal using the Serpent reactor physics code." Kerntechnik, 79 (2014) 303-313
- ^ Lötsch, T. "Fuel assembly burnup calculations for VVER fuel assemblies with the MONTE CARLO code SERPENT." Kerntechnik, 79 (2014) 295-302.
- ^ Mercatali, L., Venturini, A., Daeubler, M. and Sanchez, V. "SCALE and SERPENT solutions of the OECD VVER-1000 LEU and MOX burnup computational benchmark." Ann. Nucl. Energy, 83 (2015) 328-341.
- ^ OECD/NEA '"Burn-up Credit Criticality Safety Benchmark Phase III-C "', NEA/NSC/R/(2015)6, (link to report)
- ^ Jansson, P. et al. "Blind Benchmark Exercise for Spent Nuclear Fuel Decay Heat." Nucl. Sci. Eng. (preprint, 2022)
- ^ Ferraro, D., García, M., Valtavirta, V., Imke, U., Tuominen, R., Leppänen, J. and Sanchez-Espinoza, V. "Serpent/SUBCHANFLOW pin-by-pin coupled transient calculations for the SPERT-IIIE hot full power tests." Ann. Nucl. Energy, 142 (2020) 107387.
- ^ Sorrell, N. and Hawari, A. "TREAT M2 experiment modeling for transient benchmark analysis." Ann. Nucl. Energy, 128 (2019) 398-405.
- ^ Valentine, A., Worral, R. and Leppänen, J. "Investigation of novel weight window methods in Serpent 2 for fusion neutronics applications." Fusion Eng. Design, 178 (2022) 113090.
- ^ Lu, Y., Zhou, G., Hernández, F., Pereslavtsev, P., Leppänen, J. and Ye, M. "Benchmark of Serpent-2 with MCNP: Application to European DEMO HCPB breeding blanket." Fusion Eng. Design, 155 (2020) 111583.
- ^ Žohar, A., Štancar1, Z., Batistoni, P., Conroy, S., Snoj, L. and Lengar, I. "Validation of Serpent for Fusion neutronics analysis at JET." EJP Web Conference (PHYSOR 2020), 247 (2021) 18001.
- ^ Valtavirta, V. and Tuominen, R. "Validation and verification of the photon transport capabilities in Serpent 2.1.27" Research Report, VTT-R-00494-17 (link to report) (2017).
- ^ Eschbach, R., Feng, B., Vezzoni, B., Gabrielli, F., Alvarez-Velarde, F., Léger, V., Rocchi, F., Edwards, G., Dixon, B., Pénéliau, Y., Girieud, R., Häkkinen, S., Viitanen, T., Räty, A., Malambu, E.M. and Cornet, S. "Verification of Dose Rate Calculations for PWR Spent Fuel Assemblies", proceedings of GLOBAL 2017 (paper A-081), September 24-29, 2017, Seoul, Korea.
- ^ Häkkinen, S. "Serpent 2 Validation for Radiation Shielding Applications." ASME J. of Nuclear Rad Sci., 8 (2022) 042001.
- ^ Bilodid Y., Fridman E., Lötsch, T. "X2 VVER-1000 benchmark revision: Fresh HZP core state and the reference Monte Carlo solution" Ann. Nucl. Energy, 144 (2020) 107558
- ^ Leppänen, J., Mattila, R. and Pusa, M. "Validation of the Serpent-ARES code sequence using the MIT BEAVRS benchmark - Initial core at HZP conditions." Ann. Nucl. Energy, 69 (2014) 212-225.
- ^ Leppänen, J. and Mattila, R. "Validation of the Serpent-ARES code sequence using the MIT BEAVRS benchmark – HFP conditions and fuel cycle 1 simulation." Ann. Nucl. Energy, 96 (2016) 324-331.
- ^ Standard validation cases at Serpent website