
Kraken workshop
Python level introduction to coupled
calculations with Kraken using Cerberus

Ville Valtavirta

15/04/2024 VTT – beyond the obvious

15/04/2024 VTT – beyond the obvious

 Cerberus Python package:
• Idea

• Some important Cerberus classes:

• Solver()

• Transferrable()

• About Field()s and Mesh()es

• Interpolator()

 Serpent and Cerberus
• Three hands on tutorials.

Outline

Cerberus Python package

15/04/2024 VTT – beyond the obvious

15/04/2024 VTT – beyond the obvious

• Code agnostic multi-physics driver of the Kraken framework.

• Provides high-level API for solvers, fields and variables on Python side.

• Python makes building coupled calculation schemes simple and fun.

• Cerberus aims to hide the most boring and technical stuff from the user.

• Strikes a balance between simplicity and flexibility.

• Aimed for expert users, who can package common calculation

sequences into further Python packages/modules for non-expert users.

Cerberus Python package

A schematic representation of the Kraken framework.

Finnish solver modules developed at VTT are shown in

yellow, while potential state-of-the-art third-party

solvers to be coupled are shown in orange.

15/04/2024 VTT – beyond the obvious

Cerberus Python package

• Code agnostic multi-physics driver of the Kraken framework.

• Provides high-level API for solvers, fields and variables on Python side.

• Python makes building coupled calculation schemes simple and fun.

• Cerberus aims to hide the most boring and technical stuff from the user.

• Strikes a balance between simplicity and flexibility.

• Aimed for expert users, who can package common calculation

sequences into further Python packages/modules for non-expert users.

The Solver class of Cerberus

15/04/2024 VTT – beyond the obvious

 All solvers participating in the calculation are

based on the Solver class that provides methods

such as

• Solver.initialize()

• Solver.get_transferrable()

• Solver.solve()

• Solver.set_current_time()

• Solver.suggest_next_time()

• Solver.move_to_time()

• Solver.write_restart()

• Solver.read_restart()

• Etc.

The user does not need to know what

happens “under the hood” when calling one

of these methods from Python.

All solvers provide the same functionality to

Python even if actual implementation in the

solver module may differ.

Cerberus does not know (or care) which

solver handles neutronics and which thermal

hydraulics.

The expert user, of course, does care.

15/04/2024 VTT – beyond the obvious

 The transferrable superclass covers all input and

output data needs of the solver that can be

transferred between the solver and Cerberus.

 Transferrable.communicate(): Exchange data with

solver.

 Transferrable.write_simple(): Write data to file.

 Transferrable.write_foam(): Write data to Foam files.

 Transferrable.value_vec: Current values of data.

 Transferrable.get_conv_crit(): Evaluate convergence

criterion between current and previous values.

 …

Transferrables in Cerberus

15/04/2024 VTT – beyond the obvious

 Field() and Variable() are sub-classes of

Transferrable().

 Field is a (physical) dataset with a spatial

representation (mesh).

 Variable is a more general set/piece of data.

Often single valued.

Transferrables in Cerberus

15/04/2024 VTT – beyond the obvious

On Field()s and Mesh()es

 Field data on Python side (as seen by the user) is in

SI-units and uses a default (global) indexing for the

mesh.

 Conversions between solver (local) and Cerberus

(global) units and indexings are handled automatically

by Cerberus based on data Cerberus obtains from the

solver.

 Cerberus output can be written to files separately

using the global and local indexings (typically only

global indexing is interesting).

 https://serpent.vtt.fi/kraken/index.php/Mesh_types

Global indexing for mesh type 3: One axial layer of

structured x-type 60 degree hexagonal mesh.

https://serpent.vtt.fi/kraken/index.php/Mesh_types

15/04/2024 VTT – beyond the obvious

On Field()s and Mesh()es

 Meshes are used for automatic generation of

interpolations between fields in simple cases.

 More complex interpolations need to be pre-

generated by the user.

 Mesh information is also written in files and can be re-

created in postprocessing using

krakentools.meshes.Mesh class, which offers some

useful functionalities for plotting etc.

 Automated output to FoamFiles is supported for some

structured mesh types.

Cerberus will automatically handle

conversions between solver indexing to

global indexing to provide one uniform

indexing scheme across all solvers and

fields on the Python side.

15/04/2024 VTT – beyond the obvious

The Interpolator() class

 Handles data transfer between two Field()s using a

chosen interpolation scheme:

• One-to-one mapping.

• User supplied interpolation matrix Ӗ𝐴 that describes

the production of the destination data field ҧ𝑑 from

the source data field ҧ𝑠.
ҧ𝑑 = Ӗ𝐴 ҧ𝑠

𝑑1
⋮

𝑑𝑁𝑑

=

𝑎1→1 … 𝑎𝑁𝑠→1
⋮ ⋱ ⋮

𝑎1→𝑁𝑑
… 𝑎𝑁𝑠→𝑁𝑑

𝑠1
⋮
𝑠𝑁𝑠

Mesh 1 Mesh 2

15/04/2024 VTT – beyond the obvious

The Interpolator() class

 Handles data transfer between two Field()s using a

chosen interpolation scheme:

• One-to-one mapping.

• User supplied interpolation matrix Ӗ𝐴 that describes

the production of the destination data field ҧ𝑑 from

the source data field ҧ𝑠.
ҧ𝑑 = Ӗ𝐴 ҧ𝑠

𝑑1
𝑑2
𝑑3
𝑑4
𝑑5
𝑑6
⋮
𝑑16

=

𝑎1→1 𝑎2→1 𝑎3→1 𝑎4→1
𝑎1→2 𝑎2→2 𝑎3→2 𝑎4→2
𝑎1→3 𝑎2→3 𝑎3→3 𝑎4→3
𝑎1→4 𝑎2→4 𝑎3→4 𝑎4→4
𝑎1→5 𝑎2→5 𝑎3→5 𝑎4→5
𝑎1→6 𝑎2→6 𝑎3→6 𝑎4→6
⋮ ⋮ ⋮ ⋮

𝑎1→16 𝑎2→16 𝑎3→16 𝑎4→16

𝑠1
𝑠2
𝑠3
𝑠4

Mesh 1 Mesh 2
Power (W)

15/04/2024 VTT – beyond the obvious

The Interpolator() class

 Handles data transfer between two Field()s using a

chosen interpolation scheme:

• One-to-one mapping.

• User supplied interpolation matrix Ӗ𝐴 that describes

the production of the destination data field ҧ𝑑 from

the source data field ҧ𝑠.
ҧ𝑑 = Ӗ𝐴 ҧ𝑠

𝑑1
𝑑2
𝑑3
𝑑4
𝑑5
𝑑6
⋮
𝑑16

=

0.25 0 0 0
0.25 0 0 0
0 0.25 0 0
0 0.25 0 0

0.25 0 0 0
0.25 0 0 0
⋮ ⋮ ⋮ ⋮
0 0 0 0.25

𝑠1
𝑠2
𝑠3
𝑠4

Mesh 1 Mesh 2
Power (W)

15/04/2024 VTT – beyond the obvious

The Interpolator() class

 Handles data transfer between two Field()s using a

chosen interpolation scheme:

• One-to-one mapping.

• User supplied interpolation matrix Ӗ𝐴 that describes

the production of the destination data field ҧ𝑑 from

the source data field ҧ𝑠.
ҧ𝑑 = Ӗ𝐴 ҧ𝑠

𝑑1
𝑑2
𝑑3
𝑑4
𝑑5
𝑑6
⋮
𝑑16

=

0.25 0 0 0
0.25 0 0 0
0 0.25 0 0
0 0.25 0 0

0.25 0 0 0
0.25 0 0 0
⋮ ⋮ ⋮ ⋮
0 0 0 0.25

𝑠1
𝑠2
𝑠3
𝑠4

Mesh 1 Mesh 2
Power (W)

mapping.txt:
1 0.25
1 0.25
2 0.25
2 0.25
1 0.25
1 0.25
…
4 0.25

Using Serpent through Cerberus

15/04/2024 VTT – beyond the obvious

15/04/2024 VTT – beyond the obvious

 Cerberus copies the solver inputs to a work folder (./wrk_<solver_name>/)

 Cerberus spawns the solver processes in the work folders.
• Solver (terminal) output is directed to ./wrk_<solver_name>/out.txt

• Solver system errors are directed to ./wrk_<solver_name>/err.txt

• Note that solvers can print out warnings / errors to their out.txt.

 Cerberus connects to solvers using sockets.
• Adding -port or --port to solver command line arguments Solver(add_params=[...]) will have Cerberus pass

[“-port“, “<port_number>”] or [“--port“, “<port_number>”] as command line arguments when spawning the process.

• First port used by Cerberus can be set with cerberus.PORT_NUMBER: int = <port-number>.

• Default starting port is 2211.

• The port for connection is incremented after each solver is spawned.

 Cerberus output is printed to terminal output.
• verbosity can be controlled with cerberus.LOG.set_verbosity(level: int)

Running solvers with Cerberus

15/04/2024 VTT – beyond the obvious

Multi-physics with Cerberus

 Redoing the familiar old Minimal Serpent Coupling Script

(https://serpent.vtt.fi/mediawiki/index.php/Minimal_Serpent_Coupling_Script)

with Cerberus.
• Radially reflected pin cell with a very simple thermal hydraulics

solution coupled to Serpent neutronics.

• Water temperature and density updated via a Serpent multi-physics

interface.

 No need for handling of files or signals with Cerberus.
• From 287 to 103 lines.

 Setting up cool.ifc for Serpent input means that we get:
• sss_if_cool_temperature input field (SI unit K)

• sss_if_cool_density input field (SI unit kg/m3)

• sss_of_cool_power output field (SI unit W)

• The name of this field is actually formed based on the output file

name specified in cool.ifc

https://serpent.vtt.fi/mediawiki/index.php/Minimal_Serpent_Coupling_Script

15/04/2024 VTT – beyond the obvious

Adjusting a running Serpent calculation

 Axially homogeneous and axially black pin cell.
• Should produce a cosine shaped power distribution.

 Here we adjust 235U content to achieve a flat axial power profile for fun.
• Simply showcases modifying material compositions during runtime /

between neutronics iterations.

 Having det fission dr -6 void dz 0.0 100.0 10 gives us:
• sss_ov_DET_fission output variable

• sss_ov_DET_fission_rel_unc output variable

 Using a div-card in Serpent input to divide fuel into 10 axial zones gives

us:
• sss_ov_composition_fuelz<index>_nuclides output variables

• sss_ov_composition_fuelz<index>_zai output variables

• sss_ov_composition_fuelz<index>_adens output variables

• sss_ov_composition_fuelz<index>_original output variables

• sss_iv_composition_fuelz<index>_adens input variables

15/04/2024 VTT – beyond the obvious

Adjusting a running Serpent calculation

Iteration 1
axial zone relative power U-235 content

10 0.34 6.84319E-04
9 0.80 6.84319E-04
8 1.11 6.84319E-04
7 1.31 6.84319E-04
6 1.44 6.84319E-04
5 1.42 6.84319E-04
4 1.36 6.84319E-04
3 1.11 6.84319E-04
2 0.77 6.84319E-04
1 0.33 6.84319E-04

...

Iteration 20
axial zone relative power U-235 content

10 0.59 1.59851E-03
9 0.94 7.88999E-04
8 1.08 6.01906E-04
7 1.13 5.38819E-04
6 1.13 5.19114E-04
5 1.15 5.17418E-04
4 1.17 5.36125E-04
3 1.15 5.99989E-04
2 1.01 7.82835E-04
1 0.64 1.58008E-03

 Axially homogeneous and axially black pin cell.
• Should produce a cosine shaped power distribution.

 Here we adjust 235U content to achieve a flat axial power profile for fun.
• Simply showcases modifying material compositions during runtime /

between neutronics iterations.

 Having det fission dr -6 void dz 0.0 100.0 10 gives us:
• sss_ov_DET_fission output variable

• sss_ov_DET_fission_rel_unc output variable

 Using a div-card in Serpent input to divide fuel into 10 axial zones gives

us:
• sss_ov_composition_fuelz<index>_nuclides output variables

• sss_ov_composition_fuelz<index>_zai output variables

• sss_ov_composition_fuelz<index>_adens output variables

• sss_ov_composition_fuelz<index>_original output variables

• sss_iv_composition_fuelz<index>_adens input variables

15/04/2024 VTT – beyond the obvious

Adjusting a running Serpent calculation
geometrical adjustment

 Axially black pin cell, with 50 % fuel and 50 % boron carbide
• Supercritical to start with.

• Iterate boundary of fuel and boron carbide to get critical system.

 Adding a named transformation card trans s s2 name my_trans 0.0 0.0 50.0

in Serpent gives us:
• sss_iv_trans_my_trans input variable

• Sending e.g. 0 0 10 as values for the variable sets the z-part of the

transformation to 10.

 We’ll send 1 to sss_iv_plot_geometry to have Serpent plot

the geometry after each transformation.

15/04/2024 VTT – beyond the obvious

Adjusting a running Serpent calculation
geometrical adjustment

 Axially black pin cell, with 50 % fuel and 50 % boron carbide
• Supercritical to start with.

• Iterate boundary of fuel and boron carbide to get critical system.

 Adding a named transformation card trans s s2 name my_trans 0.0 0.0 50.0

in Serpent gives us:
• sss_iv_trans_my_trans input variable

• Sending e.g. 0 0 10 as values for the variable sets the z-part of the

transformation to 10.

 We’ll send 1 to sss_iv_plot_geometry to have Serpent plot

the geometry after each transformation.

Iteration 1:
Keff is 1.26489, relative uncertainty is
0.001 with boundary at 50.0 cm.

Iteration 2:
Keff is 1.10747, relative uncertainty is
0.001 with boundary at 30.0 cm.

...

Iteration 10:
Keff is 0.99928, relative uncertainty is
0.002 with boundary at 23.8 cm.

15/04/2024 VTT – beyond the obvious

 More output data can be exposed to be accessed

from Cerberus.

 Additional input data can also be exposed with some

limitations:

 Some new “commands” will probably be included

(e.g. write restart)

 Could write a Serpent Class, that is much more

straightforward to use
• serpent.detectors[<some_detectors>]

• serpent.source_particles[<particle N>]

• serpent.weight_window_mesh[<cell N>]

 At least can provide capabilities for Python side

plotting of things:
• With Serpent 2.2.2

• sss_iv_matpos_query_points_xyz

• sss_ov_matpos_query_names

Future ideas for Serpent and Cerberus

Ville Valtavirta

Ville.Valtavirta@vtt.fi

Kraken@vtt.fi

@VTTFinland www.vtt.fi

	VTT Presentation
	Slide 1: Kraken workshop Python level introduction to coupled calculations with Kraken using Cerberus Ville Valtavirta
	Slide 2: Outline
	Slide 3: Cerberus Python package
	Slide 4: Cerberus Python package
	Slide 5: Cerberus Python package
	Slide 6: The Solver class of Cerberus
	Slide 7: Transferrables in Cerberus
	Slide 8: Transferrables in Cerberus
	Slide 9: On Field()s and Mesh()es
	Slide 10: On Field()s and Mesh()es
	Slide 11: The Interpolator() class
	Slide 12: The Interpolator() class
	Slide 13: The Interpolator() class
	Slide 14: The Interpolator() class
	Slide 15: Using Serpent through Cerberus
	Slide 16: Running solvers with Cerberus
	Slide 17: Multi-physics with Cerberus
	Slide 18: Adjusting a running Serpent calculation
	Slide 19: Adjusting a running Serpent calculation
	Slide 20: Adjusting a running Serpent calculation geometrical adjustment
	Slide 21: Adjusting a running Serpent calculation geometrical adjustment
	Slide 22: Future ideas for Serpent and Cerberus
	Slide 23

