
Kraken workshop
Group constant generation

Ville Valtavirta

04/2024 VTT – beyond the obvious

03/04/2024 VTT – beyond the obvious

 Group constant generation with Serpent for Ants.

 Current work on VVER benchmarks.

 Summary and next steps

Contents

Using Serpent to generate group
constants for Ants in the Kraken
framework

03/04/2024 VTT – beyond the obvious

Group constant generation

03/04/2024 VTT – beyond the obvious

Serpent 2D

Infinite lattice

calculations

for fuel

assemblies

fuel assembly

infinite lattice

group constants

Group constant

parametrization

Ants 3D full

core

calculation

parametrized

group constant

library

Radial reflector

discontinuity

factor

calculation

Radial reflector

group constants

incl. DFs

reflector

group constants

without DFs

full core

heterogeneous

fluxes and

currents

ADFs

ADF and form

function

calculation

FA GCs

With proper ADFs

And pin power

Form functions

Serpent 3D

fuel assembly

calculation

including

reflectors

Serpent 2D

full core

calculation

including

reflectors

Axial reflector

group constants,

fluxes and currents

Axial DF

calculation

tutorial/rect/serpent/fuel/ tutorial/hex/serpent/fuel/

tutorial/XXX/serpent/reflector_radial/

tutorial/XXX/serpent/reflector_axial/

 Full assembly in infinite lattice.

 Depletion calculations with nominal and off-nominal conditions.

 Branch calculations with momentary variations:
• Different (Tfuel , Tcool , ρcool , CB) variations.

• Control rod variations.

• Spacer grid variations.

• Instrument tube variations.

 Can use an intermediate multigroup structure and apply leakage

correction / critical spectrum in condensation to a few group structure.

 Typically produce CMM[7] diffusion coefficients.

03/04/2024 VTT – beyond the obvious

Best practices calculation chain
fuel GCs

[7] Z. Liu et al. “Cumulative migration method for computing rigorous diffusion coefficients

and transport cross sections from Monte Carlo”.

Annals of Nuclear Energy, 112 (2018), pp. 507–516.

tutorial/???/serpent/fuel/

tutorial/???/serpent/includes/

 Full assembly in infinite lattice (set bc) (input example)
• ADF setup

• Pin power setup

• Poison constants, microdepletion setup.

 Depletion calculations with nominal and off-nominal conditions.

 Branch calculations with momentary variations:
• Different (Tfuel , Tcool , ρcool , CB) variations.

• Control rod variations.

• Spacer grid variations.

• Instrument tube variations.

 Can use an intermediate multigroup structure and apply

leakage correction / critical spectrum in condensation to a few group structure.

 Typically produce CMM[7] or transport corrected diffusion coefficients.

03/04/2024 VTT – beyond the obvious

Practical things about fuel GCs

Use of:

branch-card

casematrix-card

Running Serpent from

command line

his, coe, ln -s

set fum cas70_ext 2 f 3

set micro cas70_ext

set nfg cas8_ext

set repro 0

set shbuf 0 0

set cmm 1

set trc cool "s2v0_endfb71.h_in_h2o.trcdata" 1.000000E-11 10010

03/04/2024 VTT – beyond the obvious

Setting up ADF and pin power evaluation

% --- Include all of the common data related to hexagonal models

include "../includes/constants.inc"
include "../includes/tutorial_assemblies.inc"
include "../includes/powdens_FP.inc"
include "../includes/A1_good.mvol"

% --- Outer boundary of geometry

surf sOuter hexxc 0 0 11.8

% --- Construct infinite lattice 2D model

cell c1 0 fill A1s -sOuter sAngle
cell c2 0 E635 -sAngle
cell c3 0 outside sOuter

% --- Evaluate pin power form functions

set ppw 0 lA1s

% --- Geometry plots

plot 1 2000 2000 0 -15 15 0 30
plot 3 2000 2000 50 -15 15 -15 15

03/04/2024 VTT – beyond the obvious

Setting up ADF and pin power evaluation

% --- Include all constant data

include "../includes/constants.inc"
include "../includes/assemblies.inc"
include "../includes/A1_good.mvol"

% --- Set up the calculation geometry (SE corner of fuel assembly)

surf sBound2D sqc 5.37591 -5.37591 5.37591

% --- Fill a symmetric version of the A1 lattice

cell c1 0 fill uA1s -sBound2D
cell c2 0 outside sBound2D

% --- Pin power form function calculation

set ppw 0 lA1s

% --- Geometry plot

plot 33 1000 1000 0.1 -12 12 -12 12

03/04/2024 VTT – beyond the obvious

Poison constants and microdepletion data

% --- Fission poison data
% system total area 482.341509 cm2

set poi 1 482.341509

% --- Microdepletion data for the plutonium chain
% set mdep UNI VOL N MAT1 MAT2 ... MATN
% ZAI1 MT1
% ZAI2 MT2
% ...

set mdep 0 482.341509 0
922380 16 922380 18 922380 102
932390 16 932390 18 932390 102
942390 16 942390 18 942390 102

03/04/2024 VTT – beyond the obvious

Using branch and casematrix to set up
history and branch calculations

branch hi_tfu
stp F1400 original 800.0
stp F1500 original 800.0
stp F1800 original 800.0
stp F2400 original 800.0
stp F1506 original 800.0
stp F1806 original 800.0
stp F2405 original 800.0
stp F2409 original 800.0
stp EBOC original 404.15
stp INC original 404.15
stp air original 404.15
stp zirc original 404.15
stp steel original 404.15
repm cool cool_0000B_0404T_0934D
var TFU 800.0
var TMO 404.15
var DMO 0.9342

tutorial/rect/serpent/includes/scripts/generate_branches.py

KrakenTools/tests/*GC_generator*

03/04/2024 VTT – beyond the obvious

Using branch and casematrix to set up
history and branch calculations
branch cr_0_none
var CR 0

branch cr_1_boc
repu nocr boccr
var CR 1

branch cr_2_inc
repu nocr inccr
var CR 2

branch spa_0_none
var SPA 0

branch spa_1_grid
repu bare spa_zirc
repu uNosleeve uSleeve
var SPA 1

tutorial/rect/serpent/includes/scripts/generate_branches.py

KrakenTools/tests/*GC_generator*

03/04/2024 VTT – beyond the obvious

Using branch and casematrix to set up
history and branch calculations
branch hnomhis
stp F1400 original 561.0
stp F1500 original 561.0
stp F1800 original 561.0
stp F2400 original 561.0
stp F1506 original 561.0
stp F1806 original 561.0
stp F2405 original 561.0
stp F2409 original 561.0
stp EBOC original 404.15
stp INC original 404.15
stp air original 404.15
stp zirc original 404.15
stp steel original 404.15
repm cool cool_0000B_0404T_0934D
var hTFU 561.0
var hTMO 404.15
var hDMO 0.9342
var hCR 0
var hSPA 0

tutorial/rect/serpent/includes/scripts/generate_branches.py

KrakenTools/tests/*GC_generator*

03/04/2024 VTT – beyond the obvious

Using branch and casematrix to set up
history and branch calculations

casematrix nominals
2 hnomhis hoffhis
34 0 0.1 0.2 0.3 0.6 1 1.5 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 23 25 27 29 33 37 41
1 nominal
3 cr_0_none cr_1_boc cr_2_inc
2 spa_0_none spa_1_grid

casematrix variations
2 hnomhis hoffhis
9 0 1 4 8 12 16 23 33 41
4 lo_tmo hi_tmo lo_tmo hi_tfu
3 cr_0_none cr_1_boc cr_2_inc
2 spa_0_none spa_1_grid

casematrix reflector
1 hnomhis
1 0
3 nominal lo_tmo hi_tmo
1 cr_0_none
1 spa_0_none

tutorial/rect/serpent/includes/scripts/generate_branches.py

KrakenTools/tests/*GC_generator*

03/04/2024 VTT – beyond the obvious

Using branch and casematrix to set up
history and branch calculations

First run histories (burnup calculations)
sss2 -casematrix <case_name> <his_idx> <coe_idx> <input>

sss2 -omp 20 -casematrix nominals 1 -1 A1
^Produces A1_nominals_h1.wrk binary restart
(nominal history)

sss2 -omp 20 -casematrix nominals 2 -1 A1
^Produces A1_nominals_h2.wrk binary restart
(off-nominal history)

We can use the same restarts for coefficient calculations

ln -s A1_nominals_h1.wrk 390GO_variations_h1.wrk
ln -s A1_nominals_h2.wrk 390GO_variations_h2.wrk

03/04/2024 VTT – beyond the obvious

Using branch and casematrix to set up
history and branch calculations

Then run branches (coefficient calculations)
sss2 -casematrix <case_name> <his_idx> <coe_idx> <input>

sss2 -omp 20 –casematrix nominals 1 0 A1
Runs all branches for nominal history based on
A1_nominals_h1.wrk binary restart
Has 1x3x2=6 branches
(x15 burnups = 90 transport solutions)

sss2 -omp 20 –casematrix nominals 2 0 A1

sss2 -omp 20 –casematrix variations 1 0 A1
Has 4x3x2=48 branches
(x9 burnups = 432 transport solutions)

sss2 -omp 20 –casematrix coefficients 2 0 A1

These 4 calculations could be distributed across 4
calculation nodes on a cluster

casematrix nominals
2 hnomhis hoffhis
34 0 0.1 0.2 0.3 0.6 1 1.5 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 23 25 27 29 33 37 41
1 nominal
3 cr_0_none cr_1_boc cr_2_inc
2 spa_0_none spa_1_grid

casematrix variations
2 hnomhis hoffhis
9 0 1 4 8 12 16 23 33 41
4 lo_tmo hi_tmo lo_tmo hi_tfu
3 cr_0_none cr_1_boc cr_2_inc
2 spa_0_none spa_1_grid

casematrix reflector
1 hnomhis
1 0
3 nominal lo_tmo hi_tmo
1 cr_0_none
1 spa_0_none

03/04/2024 VTT – beyond the obvious

Using branch and casematrix to set up
history and branch calculations

Then run branches (coefficient calculations)
sss2 -casematrix <case_name> <his_idx> <coe_idx> <input>

sss2 -omp 20 –casematrix nominals 1 1 A1
sss2 -omp 20 –casematrix nominals 1 2 A1
sss2 -omp 20 –casematrix nominals 1 3 A1
sss2 -omp 20 –casematrix nominals 1 4 A1
sss2 -omp 20 –casematrix nominals 1 5 A1
sss2 -omp 20 –casematrix nominals 1 6 A1

Runs single branches for nominal history based on
A1_nominals_h1.wrk binary restart
Has 1x3x2=6 branches
(x15 burnups = 90 transport solutions)

casematrix nominals
2 hnomhis hoffhis
34 0 0.1 0.2 0.3 0.6 1 1.5 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 23 25 27 29 33 37 41
1 nominal
3 cr_0_none cr_1_boc cr_2_inc
2 spa_0_none spa_1_grid

casematrix variations
2 hnomhis hoffhis
9 0 1 4 8 12 16 23 33 41
4 lo_tmo hi_tmo lo_tmo hi_tfu
3 cr_0_none cr_1_boc cr_2_inc
2 spa_0_none spa_1_grid

casematrix reflector
1 hnomhis
1 0
3 nominal lo_tmo hi_tmo
1 cr_0_none
1 spa_0_none

03/04/2024 VTT – beyond the obvious

Using branch and casematrix to set up
history and branch calculations

Then run branches (coefficient calculations)
sss2 -casematrix <case_name> <his_idx> <coe_idx> <input>

sss2 -omp 20 –casematrix variations 2 1 A1
sss2 -omp 20 –casematrix variations 2 2 A1
sss2 -omp 20 –casematrix variations 2 3 A1
...
sss2 -omp 20 –casematrix variations 2 47 A1
sss2 -omp 20 –casematrix variations 2 48 A1

sss2 -omp 20 –casematrix variations 1 0 A1

Runs single branches for off-nominal history based on
A1_coefficients_h2.wrk binary restart
Has 4x3x2=48 branches
(x9 burnups = 432 transport solutions)

Running branches separately yields 6*2+48*2 = 108
separate Serpent runs which can be distributed across
a computational cluster

casematrix nominals
2 hnomhis hoffhis
34 0 0.1 0.2 0.3 0.6 1 1.5 2 3 4 5 6 7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 23 25 27 29 33 37 41
1 nominal
3 cr_0_none cr_1_boc cr_2_inc
2 spa_0_none spa_1_grid

casematrix variations
2 hnomhis hoffhis
9 0 1 4 8 12 16 23 33 41
4 lo_tmo hi_tmo lo_tmo hi_tfu
3 cr_0_none cr_1_boc cr_2_inc
2 spa_0_none spa_1_grid

casematrix reflector
1 hnomhis
1 0
3 nominal lo_tmo hi_tmo
1 cr_0_none
1 spa_0_none

 A1_<case_name>_h<his_idx>_r<coe_idx>.coe files
• Contain homogenized few group constants for homogenized universes.

• Includes cross sections, discontinuity factor data, pin power form

function data, poison constants, basic time constants, microdepletion

data etc.

• var definitions from branch cards show up in .coe files to help identify,

which file contains which data.

 A1_<case_name>_h<his_idx>_r<coe_idx>_res.m files
• Contain some other important data not directly bound to homogenized

universes.

 A1_<case_name>_h<his_idx>_r<coe_idx>_mdxb<coe_idx>.m files
• Contain important data for microdepletion:

• Fission spectra.

• Decay reactions (decay constants, targets, branching ratios).

• Neutron induced reactions (MTs, reaction products, Q-values).

03/04/2024 VTT – beyond the obvious

Output data from fuel GC calculations

sss2 -casematrix <case_name> <his_idx> <coe_idx> <input>

Can be read into Python objects

with serpentTools and KrakenTools

tutorial/???/serpent/fit_fuel.py

Group constant generation

03/04/2024 VTT – beyond the obvious

Serpent 2D

Infinite lattice

calculations

for fuel

assemblies

fuel assembly

infinite lattice

group constants

Group constant

parametrization

Ants 3D full

core

calculation

parametrized

group constant

library

Radial reflector

discontinuity

factor

calculation

Radial reflector

group constants

incl. DFs

reflector

group constants

without DFs

full core

heterogeneous

fluxes and

currents

ADFs

ADF and form

function

calculation

FA GCs

With proper ADFs

And pin power

Form functions

Serpent 3D

fuel assembly

calculation

including

reflectors

Serpent 2D

full core

calculation

including

reflectors

Axial reflector

group constants,

fluxes and currents

Axial DF

calculation

tutorial/rect/serpent/fuel/ tutorial/hex/serpent/fuel/

tutorial/XXX/serpent/reflector_radial/

tutorial/XXX/serpent/reflector_axial/

 Assembly discontinuity factors and pin power form functions (FFs) are by definition

dependent on the homogeneous flux solution.
• In some simple cases, the homogeneous flux is constant inside the assembly and equal to the mean

heterogeneous flux.

• In general, an actual solution to the homogeneous problem is required.

• Serpent has an internal diffusion flux solver, but as the homogeneous solution is dependent on the

nodal model, using the Serpent calculated ADFs and form functions is wrong in general.

 Instead, Ants single node 2D simulations are executed using each set of generated group

constants (and boundary conditions) to provide the corresponding homogeneous surface

fluxes and homogeneous pin-cell fluxes.
• The process is heavily automated: krakentools.ants.evaluate_ffs_and_adfs_with_ants()
• ADFs and FFs can be evaluated based on known heterogeneous and homogeneous data.

03/04/2024 VTT – beyond the obvious

Fuel ADFs and pin power form functions

tutorial/???/serpent/fit_fuel.py

 Instead, Ants single node 2D simulations are executed using each set of generated group

constants (and boundary conditions) to provide the corresponding homogeneous surface

fluxes and homogeneous pin-cell fluxes.
• The process is heavily automated: krakentools.ants.evaluate_ffs_and_adfs_with_ants()
• ADFs and FFs can be evaluated based on known heterogeneous and homogeneous data.

03/04/2024 VTT – beyond the obvious

Fuel ADFs and pin power form functions

Heterogeneous data utilized from .coe files:

DF_HET_SURF_FLUX

PPW_POW

tutorial/???/serpent/fit_fuel.py

Group constant generation

03/04/2024 VTT – beyond the obvious

Serpent 2D

Infinite lattice

calculations

for fuel

assemblies

fuel assembly

infinite lattice

group constants

Group constant

parametrization

Ants 3D full

core

calculation

parametrized

group constant

library

Radial reflector

discontinuity

factor

calculation

Radial reflector

group constants

incl. DFs

reflector

group constants

without DFs

full core

heterogeneous

fluxes and

currents

ADFs

ADF and form

function

calculation

FA GCs

With proper ADFs

And pin power

Form functions

Serpent 3D

fuel assembly

calculation

including

reflectors

Serpent 2D

full core

calculation

including

reflectors

Axial reflector

group constants,

fluxes and currents

Axial DF

calculation

tutorial/rect/serpent/fuel/ tutorial/hex/serpent/fuel/

tutorial/XXX/serpent/reflector_radial/

tutorial/XXX/serpent/reflector_axial/

 Radial reflector constants are generated using a 2D full core

geometry.

 Multiple transport solutions at zero burnup:
• Cover different (Tcool , ρcool , CB) variations.

 Diffusion coefficients transport corrected for H-1 in water.
• set trc cool "s2v0_endfb71.h_in_h2o.trcdata" 1.000000E-11 10010

Best practices calculation chain
reflector GCs

1x1 reflector meshing

2x2 reflector meshing

tutorial/???/serpent/preprocess_radial.py

 Radial reflector constants are generated using a 2D full core

geometry.

 Multiple transport solutions at zero burnup:
• Cover different (Tcool , ρcool , CB) variations.

 Diffusion coefficients transport corrected for H-1 in water.
• set trc cool "s2v0_endfb71.h_in_h2o.trcdata" 1.000000E-11 10010

 Hexagonal lattice radial reflector currently homogenized

using hexagonal nodes. In the future, also with triangular

nodes.

Best practices calculation chain
reflector GCs

tutorial/???/serpent/preprocess_radial.py

Superimposed universes for
reflector group constants

% --- First define bounding surfaces for superimposed universes
% (must not overlap)

% --- Surface bounding node RR01

surf s_bound_RR01 hexxprism 165.20000000000002 0.0 11.8 30 50

% --- Surface bounding node RR02

surf s_bound_RR02 hexxprism 177.0 20.43819952931275 11.8 30 50

% --- Surface bounding node RR03

surf s_bound_RR03 hexxprism 165.20000000000002 40.8763990586255 11.8 30 50

...

tutorial/???/serpent/preprocess_radial.py

Superimposed universes for
reflector group constants

% --- Then define (superimposed) universes based on the surfaces

% --- Superimposed universe for node RR01

cell c_SI_RR01 -u_SI_RR01 void -s_bound_RR01

% --- Superimposed universe for node RR02

cell c_SI_RR02 -u_SI_RR02 void -s_bound_RR02

% --- Superimposed universe for node RR03

cell c_SI_RR03 -u_SI_RR03 void -s_bound_RR03

...

tutorial/???/serpent/preprocess_radial.py

Superimposed universes for
reflector group constants

% --- Finally setup gcu and adf cards for the superimposed universes

set gcu -u_SI_RR01
set adf -u_SI_RR01 s_bound_RR01 0

set gcu -u_SI_RR02
set adf -u_SI_RR02 s_bound_RR02 0

set gcu -u_SI_RR03
set adf -u_SI_RR03 s_bound_RR03 0

...

 Universes linked to gcu or adf cards, but that are not part of

the geometry are treated by Serpent as superimposed on

top of the geometry.

 Some slowdown to simulations due to (additional) checking

if collision is in a superimposed universe or crosses the

boundary of one at each interaction site.

 Reflector casematrix may not need > 0 burnups or fuel

temperature branches.

 fullcore_<case_name>_h<his_idx>_r<coe_idx>.coe files
• Contain homogenized few group constants for homogenized universes.

• Includes group constants and heterogeneous node boundary fluxes

and currents.

• var definitions from branch cards show up in .coe files to help identify,

which file contains which data.

 fullcore_<case_name>_h<his_idx>_r<coe_idx>_res.m files
• Contain some other important data not directly bound to homogenized

universes.

03/04/2024 VTT – beyond the obvious

Output data
sss2 -casematrix <case_name> <his_idx> <coe_idx> <input>
Can run with

sss2 –omp 20 -casematrix reflector -1 <coe_idx> fullcore

KrakenTools collects results from 360 degree core

and averages results over symmetric positions

tutorial/???/serpent/process_radial.py

Group constant generation

03/04/2024 VTT – beyond the obvious

Serpent 2D

Infinite lattice

calculations

for fuel

assemblies

fuel assembly

infinite lattice

group constants

Group constant

parametrization

Ants 3D full

core

calculation

parametrized

group constant

library

Radial reflector

discontinuity

factor

calculation

Radial reflector

group constants

incl. DFs

reflector

group constants

without DFs

full core

heterogeneous

fluxes and

currents

ADFs

ADF and form

function

calculation

FA GCs

With proper ADFs

And pin power

Form functions

Serpent 3D

fuel assembly

calculation

including

reflectors

Serpent 2D

full core

calculation

including

reflectors

Axial reflector

group constants,

fluxes and currents

Axial DF

calculation

tutorial/rect/serpent/fuel/ tutorial/hex/serpent/fuel/

tutorial/XXX/serpent/reflector_radial/

tutorial/XXX/serpent/reflector_axial/

1. The reflector side DF is first evaluated simply as the ratio of the

heterogeneous surface flux from the Serpent 3D solution and the

homogeneous surface flux from a single node Ants calculation using

group constants and boundary condition currents from the Serpent3D

solution:

𝑓refl.
Ants =

𝜙refl.
Serpent3D

𝝫refl.
Ants

2. The fuel side DF is similarly evaluated

𝑓fuel
Ants =

𝜙fuel
Serpent3D

𝝫fuel
Ants

3. This DF is then corrected[8] by the ratio of the assembly discontinuity

factor 𝑓fuel
ADF evaluated for the fuel assembly in the infinite lattice 2D

Serpent calculation and 𝑓fuel
Ants:

𝑓refl. = 𝑓refl.
Ants ×

𝑓fuel
ADF

𝑓fuel
Ants

Best practices calculation chain
reflector discontinuity factors

[8] K. S. Smith. “Nodal diffusion methods and lattice physics data in LWR analyses: Understanding

numerous subtle details”.

Progress in Nuclear Energy 101 (2017), pp. 360–369

Radial reflector

discontinuity

factor

calculation

Radial reflector

group constants

incl. DFs

reflector

group constants

without DFs

full core

heterogeneous

fluxes and

currents

ADFs

FA GCs

With proper ADFs

And pin power

Form functions

krakentools.reflectorhg.solve_ants_2d_nodes()

tutorial/???/serpent/process_radial.py

1. The reflector side DF is first evaluated simply as the ratio of the

heterogeneous surface flux from the Serpent 3D solution and the

homogeneous surface flux from a single node Ants calculation using

group constants and boundary condition currents from the Serpent3D

solution:

𝑓refl.
Ants =

𝜙refl.
Serpent3D

𝝫refl.
Ants

2. The fuel side DF is similarly evaluated

𝑓fuel
Ants =

𝜙fuel
Serpent3D

𝝫fuel
Ants

3. This DF is then corrected[8] by the ratio of the assembly discontinuity

factor 𝑓fuel
ADF evaluated for the fuel assembly in the infinite lattice 2D

Serpent calculation and 𝑓fuel
Ants:

𝑓refl. = 𝑓refl.
Ants ×

𝑓fuel
ADF

𝑓fuel
Ants

Best practices calculation chain
reflector discontinuity factors

[8] K. S. Smith. “Nodal diffusion methods and lattice physics data in LWR analyses: Understanding

numerous subtle details”.

Progress in Nuclear Energy 101 (2017), pp. 360–369

Radial reflector

discontinuity

factor

calculation

Radial reflector

group constants

incl. DFs

reflector

group constants

without DFs

full core

heterogeneous

fluxes and

currents

ADFs

FA GCs

With proper ADFs

And pin power

Form functions

krakentools.reflectorhg.solve_ants_2d_nodes()

tutorial/???/serpent/process_radial.py

Group constant generation

03/04/2024 VTT – beyond the obvious

Serpent 2D

Infinite lattice

calculations

for fuel

assemblies

fuel assembly

infinite lattice

group constants

Group constant

parametrization

Ants 3D full

core

calculation

parametrized

group constant

library

Radial reflector

discontinuity

factor

calculation

Radial reflector

group constants

incl. DFs

reflector

group constants

without DFs

full core

heterogeneous

fluxes and

currents

ADFs

ADF and form

function

calculation

FA GCs

With proper ADFs

And pin power

Form functions

Serpent 3D

fuel assembly

calculation

including

reflectors

Serpent 2D

full core

calculation

including

reflectors

Axial reflector

group constants,

fluxes and currents

Axial DF

calculation

tutorial/rect/serpent/fuel/ tutorial/hex/serpent/fuel/

tutorial/XXX/serpent/reflector_radial/

tutorial/XXX/serpent/reflector_axial/

Best practices calculation chain
Axial reflector homogenization

Serpent 3D

full core /

minicore

calculation

including

reflectors

Axial reflector

group constants

(no zDFs)
 Rather similar to radial reflector homogenization, but typically

uses a 3D model :
• Single assembly.

• Colorset.

• Full core.

 May need control rod branches?

 Superimposed universes set up similar to radial reflector.

 Axial discontinuity factors calculated similar to radial ones.
• Except no correction with ADF, naturally.

tutorial/???/serpent/preprocess_axial.py

tutorial/???/serpent/process_axial.py

Group constant generation

03/04/2024 VTT – beyond the obvious

Serpent 2D

Infinite lattice

calculations

for fuel

assemblies

fuel assembly

infinite lattice

group constants

Group constant

parametrization

Ants 3D full

core

calculation

parametrized

group constant

library

Radial reflector

discontinuity

factor

calculation

Radial reflector

group constants

incl. DFs

reflector

group constants

without DFs

full core

heterogeneous

fluxes and

currents

ADFs

ADF and form

function

calculation

FA GCs

With proper ADFs

And pin power

Form functions

Serpent 3D

fuel assembly

calculation

including

reflectors

Serpent 2D

full core

calculation

including

reflectors

Axial reflector

group constants,

fluxes and currents

Axial DF

calculation

tutorial/rect/serpent/fuel/ tutorial/hex/serpent/fuel/

tutorial/XXX/serpent/reflector_radial/

tutorial/XXX/serpent/reflector_axial/

 Generic polynomial model implemented in Ants[9] with a polynomial fit

for momentary state parameters. (Tfuel , Tcool , ρcool , CB).

 Control rod, spacer grid and instrumentation tube are treated as select variables with

separate nominal values and polynomial coefficients tabulated for each possible

combination.

 History effects currently handled using a plutonium history approach[10]

(with microdepletion).

03/04/2024 VTT – beyond the obvious

Group constant parametrization

[9] V. Valtavirta, A. Rintala. “Specifications for the generic polynomial group constant model of Ants”,

Research report (public), VTT-R-00154-21, 2021.

[10] Y. Bilodid. “Spectral history modelling in the reactor dynamics code DYN3D”, PhD thesis,

Technical University of Dresden, 2014 (HZDR-051).

krakentools.groupconstants.genpoly

tutorial/???/serpent/process_radial.py

tutorial/???/serpent/process_axial.py

tutorial/???/serpent/fit_fuel.py

tutorial/???/serpent/combine_gcs.py

Summary

03/04/2024 VTT – beyond the obvious

03/04/2024 VTT – beyond the obvious

 Serpent has been developed for group constant generation from the start.

 In the recent years, the application of Serpent for such tasks at VTT has

been made more routine.

 The process of generating group constants for fuel cycle simulations is

quite clear:
• Fuel assemblies, reflector regions, proper DFs and form functions.
• Use of branch cards for setting up history and branch conditions.

• Use of casematrix to set up the calculation matrix and run it efficiently.

• Group constants for Ants parametrized using KrakenTools.

Summary

Ville Valtavirta

ville.valtavirta@vtt.fi

03/04/2024 VTT – beyond the obvious

	VTT Presentation
	Slide 1: Kraken workshop Group constant generation Ville Valtavirta
	Slide 2: Contents
	Slide 3: Using Serpent to generate group constants for Ants in the Kraken framework
	Slide 4: Group constant generation
	Slide 5: Best practices calculation chain fuel GCs
	Slide 6: Practical things about fuel GCs
	Slide 7: Setting up ADF and pin power evaluation
	Slide 8: Setting up ADF and pin power evaluation
	Slide 9: Poison constants and microdepletion data
	Slide 10: Using branch and casematrix to set up history and branch calculations
	Slide 11: Using branch and casematrix to set up history and branch calculations
	Slide 12: Using branch and casematrix to set up history and branch calculations
	Slide 13: Using branch and casematrix to set up history and branch calculations
	Slide 14: Using branch and casematrix to set up history and branch calculations
	Slide 15: Using branch and casematrix to set up history and branch calculations
	Slide 16: Using branch and casematrix to set up history and branch calculations
	Slide 17: Using branch and casematrix to set up history and branch calculations
	Slide 18: Output data from fuel GC calculations
	Slide 19: Group constant generation
	Slide 20: Fuel ADFs and pin power form functions
	Slide 21: Fuel ADFs and pin power form functions
	Slide 22: Group constant generation
	Slide 23: Best practices calculation chain reflector GCs
	Slide 24: Best practices calculation chain reflector GCs
	Slide 25: Superimposed universes for reflector group constants
	Slide 26: Superimposed universes for reflector group constants
	Slide 27: Superimposed universes for reflector group constants
	Slide 28: Output data
	Slide 29: Group constant generation
	Slide 30: Best practices calculation chain reflector discontinuity factors
	Slide 31: Best practices calculation chain reflector discontinuity factors
	Slide 32: Group constant generation
	Slide 33: Best practices calculation chain Axial reflector homogenization
	Slide 34: Group constant generation
	Slide 35: Group constant parametrization
	Slide 36: Summary
	Slide 37: Summary
	Slide 38

