Transient simulations

From Serpent Wiki
Jump to: navigation, search

This page outlines the usage instructions for the methodology in Serpent to conduct time dependent simulations starting from a criticality source. These capabilities have been developed for transient calculations starting from a known critical system in steady state conditions. For information about external/fixed source simulations with population control see: Dynamic external source simulation mode

The transient methodology is still under development, which means that any results should be examined with caution.

Transient analyses with Serpent currently have to be executed in two parts:

  1. A criticality source simulation to generate the steady state neutron and delayed neutron precursor sources for the time dependent simulation.
  2. A time dependent simulation to model the time evolution of the system starting from the steady state source distributions.

Generating the steady state source distributions

Input

Generating the initial source for the dynamic simulation is done with a criticality source simulation (see the model input). The only modification required to an existing input is the addition of one line:

set savesrc FILEPATH [PN PP NX NY NZ]

The FILEPATH argument tells Serpent, where to save the generated source distributions. Serpent will actually generate four source files:

  • FILEPATH.main - containing general information of the generated source
  • FILEPATH.prec - containing a precursor source tallied on a cartesian mesh
  • FILEPATH.live - containing the live neutron source (binary)
  • FILEPATH.precpoints - containing a point-wise precursor source (binary)

The other arguments are optional: PN and PP (numbers between [0,1]) can be used to adjust the probability store any single neutron or precursor to the source respectively. The default values are 1.0 for each. PN has to be adjusted a smaller value in many simulations. Since the probability to store a live neutron in any interaction has an inverse dependence on the cross section used to sample the path, the way the probability is calculated can lead to larger than unity probabilities for some interactions. In these cases Serpent will print out a warning:

***** Fri Feb  5 11:58:16 2016 (seed = 1454666276)
Warning message from function WriteSourceFile:

P larger than 1 (1.630892E+00)

PN should be then adjusted to make the saving probabilities smaller than one (PN is directly used to multiply the saving probability). PN linearly affects the number of neutrons being saved, so making it too small means that a large amount of neutrons have to be simulated to produce an adequate number of source points.

A smaller than unity PP can be set if, for some reason, the number of point-wise precursors that are saved has to be reduced.

NX, NY and NZ are optional parameters that can be used to set the size of the cartesian mesh used to tally the precursor populations (1x1x1 by default). If the point-wise precursor tracking will be used in the time dependent simulation, this can be left to the default size.

Output

.main-file

The .main-file contains general information of the saved neutron and precursor sources.

nPop nPopErr
nTime nGroups nSpatial0 nSpatial1 nSpatial2
time
lambda1 lambda2 ... lambdanGroups

The .main-file contains the total neutron population of the system on the first line accompanied with it's estimated relative standard error. Serpent uses this to set the initial power level of the dynamic simulation to match that of the criticality source simulation.

The second line contains information about the binning of the precursor population. The number of the precursor groups is equal to the number of unique delayed neutron groups in the simulation.

The third line contains the simulation time the saved source matches. This will only be non-zero if using set savesrc in a time dependent simulation.

The fourth line contains the decay constants of the delayed neutron groups. Serpent uses these to check that the same group structure is being used in the criticality source simulation and the time dependent simulation.

.prec-file

The .prec-file contains the group-wise precursor populations tallied on the regular mesh. With point-wise precursors they are only used to set the normalization of the precursors. Each line contains a single tally bin:

iTime iGroup iSpatial value error

where

iTime  : the time bin index (0 = beginning of simulation, largest index = end of simulation)
iGroup  : the delayed neutron group index
iSpatial  : the spatial bin index
value  : the stable precursor population in the bin
error  : the estimated relative standard error of the population

.live-file

The .live-file is a binary file containing neutrons stored at random interactions (uniformly distributed in time) during the active cycles of the criticality source simulation. Each neutron consists of nine values each taking eight bytes (64 bits). The values are (in order):

  1. x-coordinate (cm)
  2. y-coordinate (cm)
  3. z-coordinate (cm)
  4. u : Directional cosine with respect to the x-axis
  5. v : Directional cosine with respect to the y-axis
  6. w : Directional cosine with respect to the z-axis
  7. E : Neutron energy (MeV)
  8. wgt : Statistical weight
  9. t : Simulation time


Since each neutron takes

9*size(double) = 9*8 = 72 

bytes of disk space, the number of stored neutrons can be calculated by dividing the file size (in bytes) by 72.

.precpoints-file

The .precpoints-file is a binary file containing delayed neutron precursors stored using an implicit estimator during the active cycles of the criticality source simulation. Each precursor also takes up

9*size(double) = 9*8 = 72

bytes of disk space, which means that the number of stored precursors can be calculated from the file size the same way as with live neutrons.

Important notes

  • The system should be as close to criticality as possible as any deviations result in errors in the live neutron source (due to the k-eigenvalue iteration only being accurate in critical systems) and in the precursor source (since the stable concentrations are calculated assuming steady state).
  • Implicit reaction modes will affect the weight distribution of the neutron population, which may have adverse effects for statistics in some cases. The implicit reaction modes can be turned off by first turning off the group constant generation (set gcu -1) and then turning off the implicit reaction modes (set impl 0 0 0).

Running the time dependent simulation

Small modifications should be made to the criticality source input in order to run the time dependent simulation:

  1. The time binning of the simulation should be created with the tme-card.
  2. The simulated population should be set with the set nps option and the simulation time binning should be provided here.
  3. A previously generated steady state source should be linked with the set dynsrc option.

To set up the delayed neutrons you should just link the source generated previously with the

set dynsrc PATH [ MODE ]

input option, where the parameters are

PATH  : The path of the previously generated source file (without the .main suffix)
MODE  : Precursor tracking mode (0 = mesh based, 1 = point-wise)

The four separate source files should be found PATH.main, PATH.prec, PATH.live and PATH.precpoints.

Notes:

  • The geometry and the material compositions of the system can be modified before the time dependent simulation to perturb the system. However, the neutron and precursor source distributions will be overlaid to the new geometry as is, without any modifications.
  • The neutron and precursor source at the end of the time dependent simulation can also be saved using the set savesrc input option. A file-path different from the initial source file-path should be defined, in order not to overwrite the initial source distribution.
  • If the neutron and precursor source linked with the set dynsrc input option is from a previous time dependent simulation and thus corresponds to a nonzero simulation time, the time binning of this simulation should start from the end time of the previous simulation.
  • Detector output in time dependent calculations is integrated with respect to time.

Input examples

Publications and presentations